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Chapter 0

Essential Topics in Modern Mathematics

0.1 Sets, Relations, and Functions

Contemporary mathematics is communicated rigorously using sets, symbols, functions, relations,

certain computational tools, and proofs; thus, it is imperative for us to develop the necessary diction,

grammar, and syntax in order for us to effectively communicate. We accomplish this formally via

the language of set theory and the calculus of logic. Each of these branches of mathematics enjoys

contemporary ubiquity and significance that make them active areas of research, but we will not

trouble ourselves with these subtle complexities. Explicitly, if it matters to the reader, we will adopt

the standard axioms of the “näıve” or Zermelo-Fraenkel set theory with the Axiom of Choice.

0.1.1 Sets and Set Operations

We define a set X as a collection of “similar” objects, e.g., the names of the 2023-2024 Golden State

Warriors, the menu items at the cafeteria this evening, or any collection of real numbers. We refer

to an arbitrary object x of a set X as an element (or member) of X. Concretely, if x is an element

of X, then we write x ∈ X to denote that “x is an element (or member) of the set X.” We may also

say in this case that x “belongs to” or “lies in” X, or we may wish to emphasize that X “contains”

x. Conversely, if y does not lie in X, then we write y /∈ X to signify this fact symbolically.

Order and repetition are irrelevant notions when considering the elements of a set. Explicitly, the

setW consisting only of the real numbers 1 and −1 can be realized asW = {−1, 1} orW = {1,−1}
or W = {−1, 1,−1, 1}. Out of desire for simplicity, we will list only the distinct elements of a set.

Consequently, if there are “few enough” distinct elements of a set X, we can explicitly write down X

using braces. Observe that X = {1, 2, 3, 4, 5, 6} is the unique set consisting of the first six positive

integers. Unfortunately, as the number of members of X increases, such an explicit expression of X

becomes cumbersome to write down; instead, we may use set-builder notation to express a set

whose members possess a closed-form. Explicitly, set-builder notation exhibits an arbitrary element

x of the attendant set X followed by a bar | and a list of qualitative information about x, e.g.,

X = {1, 2, 3, 4, 5, 6} = {x | x is an integer and 1 ≤ x ≤ 6}.

Even more, set-builder notation can be used to list the elements of infinite sets. We will henceforth

fix the following notation for the sets of natural numbers Z≥0 = {n | n is a non-negative integer},

6
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integers Z = {n | n is an integer}, and rational numbers Q =
{

a
b
| a and b are integers, b ̸= 0

}
.

Using the rational numbers, one can construct the real numbers R = {x | x is a real number}.

Example 0.1.1. Crucially, we must be able to convert between set-builder notation and explicit

(“curly braces”) notation. Given the set S = {n | n is an integer and |n| ≤ 3}, we find that n is an

integer such that −3 ≤ n ≤ 3, hence we conclude that S = {−3,−2,−1, 0, 1, 2, 3}.

Example 0.1.2. Consider the finite set T = {−7,−5,−3, . . . , 11, 13}.We use an ellipsis in this case

to signify that the pattern repeats up to the integer 11. Each of the elements −7, −5, −3, 11, and 13

of T is an odd integer, hence the set T consists of all odd integers t such that −7 ≤ t ≤ 13. We may

likewise use set-builder notation to express that T = {t | t is an odd integer and − 7 ≤ t ≤ 13}.
We could have perhaps more easily described this set as T = {t ∈ Z | t is odd and − 7 ≤ t ≤ 13}.

Example 0.1.3. Consider the infinite set U = {x2 | x ∈ Z≥0}. Every element of U is the square

of some non-negative integers, hence we have that U = {0, 1, 4, 9, 16, . . . }. Once again, we use an

ellipsis to signify that the pattern continues; however, in this case, it does so indefinitely.

One important consideration in the arithmetic of sets is the number of elements that belong to

the set. One can readily verify that the set X = {1, 2, 3, 4, 5, 6} consists of six elements, but the set

Y = {1, 2, 3, 4, 5} possesses five elements. Observe that this immediately distinguishes the sets X

and Y. We refer to the number of elements in a finite set X as the cardinality of X, denoted by

#X or |X|. Like we previously mentioned, we have that |X| = 6 and |Y | = 5. Cardinality can be

defined even for infinite sets, but additional care must be taken in this case, so we will not bother.

Example 0.1.4. Consider the following four sets written in set-builder notation.

A = {n ∈ Z≥0 | n ≤ 9} C = {x ∈ R | x2 − 2 = 0}
B = {q ∈ Q≥0 | q ≤ 9} D = {q ∈ Q | q2 − 2 = 0}

We will illustrate some of the concepts of this section by answering the following.

(a.) (Explicit Notation) By definition, we have the set membership n ∈ A if and only if n is a non-

negative integer such that n ≥ 9. Consequently, we conclude that A = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}.

(b.) (Set Membership) By definition, we have that q ∈ A if and only if q is a non-negative rational

number such that q ≤ 9. We note that there are infinitely many elements of B that do not lie

in A. Concretely, any rational number 1
2n

for some integer n ≥ 1 lies in B but not in A.

(c.) (Explicit Notation) By the Square Root Property, we have that x2−2 = 0 if and only if x2 = 2

if and only if x = ±
√
2. Consequently, the elements of C are given by C = {−

√
2,
√
2}.

(d.) (Set Membership) By part (c.), there are no elements in D because neither ±
√
2 is rational.

(e.) (Cardinality) By parts (a.), (c.), and (d.), we have that |A| = 10, |C| = 2, and |D| = 0.

Commonly in mathematics, in order to understand an object, it is beneficial to study its subob-

jects. Consequently, for a given set, we may seek to determine all sets that can be constructed with

the elements of the specified set. Concretely, it is straightforward to verify that every element of

the set Y = {1, 2, 3, 4, 5} is also an element of the set X = {0, 1, 2, 3, 4, 5, 6}, but there are elements
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of X that do not lie in Y : namely, we have that 0, 6 ∈ X and yet 0, 6 /∈ Y.We express this by saying

that Y is a proper subset of X: the modifier “proper” indicates that X and Y are not the same

set (since they do not have the same members). Put into symbols, we write Y ⊂ X if and only if

(a.) every element of Y is an element of X and

(b.) there exists an element of X that is not contained in Y.

We read Y ⊂ X as “Y is contained in but does not equal X.” We may also say that Y is “included

in” X or that Y “lies in” X. One other way to indicate that Y is a (proper) subset of X is to say

that X is a (proper) superset of Y, in which case we write X ⊇ Y (or X ⊃ Y if the containment

is proper). Observe that if we could step through the paper and look at the superset containment

X ⊇ Y from the other side, we would simply see that Y ⊆ X; however, it is sometimes preferable

to use this notation to emphasize that X is the object of our concern rather than Y.

Containment of subsets is transitive in the sense that if X ⊆ Y and Y ⊆ Z, then X ⊆ Z:

indeed, every element x ∈ X is an element of Y so that x ∈ Y ; moreover, every element of Y is an

element of Z so that x ∈ Z ultimately holds. Compare this with inequalities of real numbers.

Proposition 0.1.5 (Set Containment Is Transitive). Given any sets X, Y, and Z such that X ⊆ Y

and Y ⊆ Z, we have that X ⊆ Z. Put another way, set containment is transitive.

Example 0.1.6. Consider the sets A = {−1, 1}, B = {−1, 0, 1}, and C = {−2,−1, 1, 2}. Observe

that the strict inclusions A ⊂ B and A ⊂ C hold, but neither B ⊆ C or C ⊆ B holds.

Example 0.1.7. Every non-negative integer is an integer; every integer is a rational number; and

every rational number is a real number. Consequently, we have the subset containments

Z≥0 ⊂ Z ⊂ Q ⊂ R.

Each of these containments is strict because −1 is an integer that is not non-negative; 1
2
is a rational

number that is not an integer; and
√
2 is a real number that is not a rational number. We will from

now on refer to the collection of real numbers that are not rational as irrational numbers.

Equality of sets is determined by simultaneous subset and superset containments. Explicitly, a

pair of sets X and Y are equal if and only if it holds that X ⊆ Y and X ⊇ Y. Put another way,

the sets X and Y are equal if and only if X and Y possess exactly the same elements: indeed, for

any element x ∈ X, we have that x ∈ Y because X ⊆ Y , and for any element y ∈ Y , we have that

y ∈ X because X ⊇ Y. Crucially, one can demonstrate that two finite sets are equal if and only if

they have the same cardinality and one of the sets is a subset of the other (cf. Proposition 0.1.86).

Often, we will view a setX as a subset of a specified universal set (or ambient set). Explicitly,

in each of the examples from the previous two sections, we typically dealt with integers, hence we

could have taken the ambient set as any of Z, Q, or R. Context will usually make this clear.

Like with the usual arithmetic of real numbers, we may define mathematical operations on sets.

We will explore in this section typical set operations that allow us to combine, compare, and take

differences of sets. Consider the sets X = {0, 1, 2, 3, 4, 5, 6} and Y = {1, 2, 3, 4, 5} of the previous

section. We introduce the relative complement of Y with respect to X to formalize our previous

observation that 0 and 6 belong to X but do not belong to Y. By definition, the relative complement
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of Y with respect to X is the set consisting of all elements of X that are not elements of Y. We use

the symbolic notation X \ Y to denote the relative complement of Y with respect to X so that

X \ Y = {w | w ∈ X and w /∈ Y }.

We note that X \ Y = {0, 6} in our running example. We may view the relative complement of Y

with respect to X as the “set difference” of X and Y. Conversely, the two sets X and Y “overlap” in

{1, 2, 3, 4, 5} because they both contain the elements 1, 2, 3, 4, and 5. We define the intersection

X ∩ Y = {w | w ∈ X and w ∈ Y }

of the setsX and Y as the set of all elements that belong to bothX and Y.Going back to our running

example of X = {0, 1, 2, 3, 4, 5, 6} and Y = {1, 2, 3, 4, 5}, we have that X ∩Y = {1, 2, 3, 4, 5}. Order

of the sets does not matter with respect to the set intersection. Explicitly, for any sets X and Y,

we have that X ∩ Y = Y ∩X because every element that lies in both X and Y lies in both Y and

X. Consequently, set intersection is a commutative (or order-invariant) operation.

Exercise 0.1.8. Construct a Venn diagram to visualize the sets X, Y, X \ Y, and X ∩ Y.
Example 0.1.9. Consider the sets A = {1, 2, 3, . . . , 10}, B = {1, 4, 9}, and C = {1, 3, 5, 7, 9}. We

have that A \ B = {2, 3, 5, 6, 7, 8, 10}, A \ C = {2, 4, 6, 8, 10}, B \ C = {4}, and C \ B = {3, 4, 7}.
Each of the sets A and B is a proper subset of A, and we have that A ∩B = B and A ∩ C = C.

Crucially, if B ⊆ A, then A ∩ B = B: indeed, every element of B is an element of A, hence we

have that A ∩B ⊇ B. Conversely, every element of A ∩B is an element of B so that A ∩B ⊆ B.

Proposition 0.1.10 (Going-Down Property of Set Intersection). Given any sets X and Y such

that X ⊆ Y, we have that X ∩ Y = X. Conversely, if X ∩ Y = X, then X ⊆ Y.

Proof. By the paragraph preceding the statement of the proposition, the first assertion holds. Con-

versely, if X ∩ Y = X, then for every element x ∈ X, we have that x ∈ X ∩ Y so that x ∈ Y.

Example 0.1.11. Consider the sets D = {1, 3, 5, 7}, E = {1, 4, 7, 10}, and F = {2, 5, 8, 11}. We

have that D \ E = {3, 5}, D \ F = {1, 3, 7}, E \D = {4, 10}, and F \D = {2, 8, 11}. Even more,

we have that D ∩ E = {1, 7}, D ∩ F = {5}, and E and F have no elements in common.

Consider the finite sets V = {1, 2, 3} and W = {4, 5, 6}. Considering that none of the elements

of V belongs to W and none of the elements of W belongs to V, the intersection of V and W does

not possess any elements; it is empty! Conventionally, this is called the empty set; it is denoted

by ∅. Put another way, our observations thus far in this paragraph can be stated as V ∩W = ∅.
We will soon see that the empty set is a proper subset of every nonempty set. Going back to our

discussion of V and W, we remark that the keen reader might have noticed that W = X \ V and

V = X \ W, i.e., every element of X lies in either V or W but not both (because there are no

elements that lie in both V and W ). We say in this case that the set X is the union of the two sets

V and W, and we write X = V ∪W. Generally, the union of two sets X and Y is the set consisting

of all objects that are either an element of X or an element of Y (or both) — that is, we have that

X ∪ Y = {w | w ∈ X or w ∈ Y }.

Like the set intersection, the set union is also a commutative (or order-invariant) operation.
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Example 0.1.12. Consider the sets A, B, and C of Example 0.1.9. Each of the elements of B and

C are elements of A, hence we have that A ∪B = A, A ∪ C = A, and B ∪ C = {1, 3, 4, 5, 7, 9}.
Crucially, if B ⊆ A, then A ∪B = A: indeed, every element of A is an element of A ∪B, hence

we have that A ∪B ⊇ A. Conversely, every element of A ∪B is an element of A and A ∪B ⊆ A.

Proposition 0.1.13 (Going-Up Property of Set Union). Given any sets X and Y such that X ⊆ Y,

we have that X ∪ Y = Y. Conversely, if X ∪ Y = Y, then X ⊆ Y.

Proof. By the paragraph preceding the statement of the proposition, the first assertion holds. Con-

versely, if X ∪ Y = Y, then for every element x ∈ X, we have that x ∈ X ∪ Y so that x ∈ Y.

Example 0.1.14. Consider the sets D, E, and F of Example 0.1.11. Excluding any overlap, we

have that D∪E = {1, 3, 4, 5, 7, 10}, D∪F = {1, 2, 3, 5, 7, 8, 11}, and E∪F = {1, 2, 4, 5, 7, 8, 10, 11}.
Every set X gives rise to a unique set consisting of all possible subsets of X. Explicitly, for any

set X, the power set P (X) is the set of all subsets of X — including the empty set.

Example 0.1.15. Consider the set U = {−1, 0, 1}. Counting the empty set by convention, there

are exactly 23 = 8 subsets of U. Each subset is determined by including or excluding each element

of U. Label the elements of U in order; then, construct an ordered triple consisting of checks ✓ and

crosses × corresponding respectively to whether an element of U is included or excluded as follows.

×××: ∅ ✓✓×: {−1, 0}
✓××: {−1} ✓×✓: {−1, 1}
×✓×: {0} ×✓✓: {0, 1}
× ×✓: {1} ✓✓✓: {−1, 0, 1}

Consequently, we have that P (U) = {∅, {−1}, {0}, {1}, {−1, 0}, {−1, 1}, {0, 1}, {−1, 0, 1}}.
Crucially, if U is a finite set, then |P (U)| = 2|U |: indeed, every subset of U is uniquely determined

by its elements, and each element of U can either be included or excluded from a given subset.

Proposition 0.1.16 (Cardinality of the Power Set of a Finite Set). Given any finite set X, the

power set of X has cardinality 2|X|. Put another way, we have that |P (X)| = 2|X| if |X| is finite.

Example 0.1.17. Consider the finite sets ∅, X = {∅}, and Y = {∅, {∅}} = {∅, X}. By the previ-

ous proposition, it follows that |P (∅)| = 20 = 1, |P (X)| = 21 = 2, and |P (Y )| = 22 = 4. Explicitly,

we have that P (∅) = {∅} = X, P (X) = {∅, {∅}} = Y, and P (Y ) = {∅, {∅}, {{∅}}, {∅, {∅}}}.
Often, we wish to deal with objects from a collection of more than two sets. Considering that

the union and intersection of a pair of sets is itself a set, we can apply recursion. We achieve this by

first creating an index set I that contains all of the labels for the sets in question. Explicitly, if we

are working with three distinct sets X1, X2, and X3, then our index set can be taken as I = {1, 2, 3}
to indicate the first, second, and third set. Bearing in mind that the order of the sets in a set union

or intersection does not matter, we do not need to worry about the order of the labels of our sets.

Even more, we are often at liberty to label our sets in an order-appropriate manner. We have that

X1 ∩X2 ∩X3 = {x | x ∈ X1 and x ∈ X2 and x ∈ X3} and

X1 ∪X2 ∪X3 = {x | x ∈ X1 or x ∈ X2 or x ∈ X3}.
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Consequently, in order for an element to lie in the intersection X1 ∩X2 ∩X3 of three sets, it must

lie in each of the three sets; on the other hand, an element belongs to the union X1 ∪ X2 ∪ X3 if

and only if it belongs to at least one of the three sets. Generally, we may define the set union and

intersection of a finite number n ≥ 2 of sets X1, X2, . . . , Xn using the index set [n] = {1, 2, . . . , n}.

⋂
i∈[n]

Xi =
n⋂

i=1

Xi = X1 ∩X2 ∩ · · · ∩Xn = {x | x ∈ Xi for each integer 1 ≤ i ≤ n}

⋃
i∈[n]

Xi =
n⋃

i=1

Xi = X1 ∪X2 ∪ · · · ∪Xn = {x | x ∈ Xi for some integer 1 ≤ i ≤ n}

Example 0.1.18. Consider the sets A1 = {1, 2}, A2 = {2, 3}, . . . , A10 = {10, 11}. Crucially, we
note that Ai = {i, i+1} for each integer 1 ≤ i ≤ 10. Using the index set [10] = {1, 2, . . . , 10} yields

10⋂
i=1

Ai = {a | a ∈ Ai for each integer 1 ≤ i ≤ 10} = ∅,

j+1⋂
i=j

Ai = {a | a ∈ Aj and a ∈ Aj+1} = {j + 1}, and

k⋂
i=j

Ai = {a | a ∈ Ai for each integer 1 ≤ j ≤ k ≤ 10} =


{j, j + 1} if k = j,

{j + 1} if k = j + 1, and

∅ if k ≥ j + 2.

Consequently, the intersection of these sets is typically empty; however, the union satisfies that

10⋃
i=1

Ai = {a | a ∈ Ai for some integer 1 ≤ i ≤ 10} = {1, 2, . . . , 11},

7⋃
i=3

Ai = {a | a ∈ Ai for some integer 3 ≤ i ≤ 7} = {3, 4, . . . , 8}, and

k⋃
i=j

Ai = {a | a ∈ Ai for some integer 1 ≤ j ≤ k ≤ 10} = {j, j + 1, . . . , k + 1}.

Example 0.1.19. Consider the index set L = {a, b, c, . . . , z} consisting of all 26 letters of the

English alphabet. We may define for each letter ℓ ∈ L the set Wℓ consisting of all English words

that contain the letter ℓ; this induces an indexed collection of sets {Wℓ}ℓ∈L. Certainly, we have that⋂
ℓ∈L

Wℓ = ∅ and
⋃
ℓ∈L

Wℓ = {ω | ω is a word in the English language}

because there is no word in the English language that consists of all letters of the alphabet. Even

more, consider the set V = {a, e, i, o, u} of all vowels in the English language. We note that ∩ℓ∈VWℓ

consists of many words, including satisfying words like “facetious” and “sequoia.” Conversely, the

word “why” does not belong to ∪ℓ∈VWℓ because it does not contain any of the letters a, e, i, o, or u.



12 CHAPTER 0. ESSENTIAL TOPICS IN MODERN MATHEMATICS

We need not confine ourselves to the case that our index set is finite. Explicitly, we may consider

any collection of sets {Xi}i∈I indexed by any nonempty (possibly infinite) set I. We have that⋂
i∈I

Xi = {x | x ∈ Xi for each element i ∈ I} and⋃
i∈I

Xi = {x | x ∈ Xi for some element i ∈ I}.

We may also refer to the elements i ∈ I as indices; the set {Xi}i∈I is an indexed collection of sets.

Example 0.1.20. Consider the infinite index set I = Z≥0 consisting of all non-negative integers.

We may construct an indexed collection of sets {Xi}i∈I by declaring that Xi = {i, i + 1} for each

element i ∈ I. Conventionally, the intersection and union over this infinite index set are written as⋂
i∈I

Xi =
∞⋂
i=0

Xi and
⋃
i∈I

Xi =
∞⋃
i=0

Xi.

Computing the former gives the empty set, but the latter yields the index set I = Z≥0.

Example 0.1.21. Consider the infinite index set Z≥1 consisting of all integers n ≥ 1, i.e., all

positive integers. Each positive integer n gives rise to a closed interval of real numbers

Cn =

[
− 1

n
,
1

n

]
=

{
x ∈ R : − 1

n
≤ x ≤ 1

n

}
.

Each of these intervals is nested within the preceding interval: explicitly, for each integer n ≥ 1,

we have that Cn ⊇ Cn+1 because for any real number x ∈ Cn+1, we have that x ∈ Cn since

− 1

n
< − 1

n+ 1
≤ x ≤ 1

n+ 1
<

1

n
.

Consequently, it follows that C1 ⊇ C2 ⊇ · · · so that the indexed collection of sets {Cn}∞n=1 forms a

descending chain of sets. Generally, it is true for descending chains of sets that the union of sets

in the chain is the largest set in the chain (see Proposition 0.1.13). Put another way, we have that

∞⋃
n=1

Cn =

{
x ∈ R : − 1

n
≤ x ≤ 1

n
for some integer n ≥ 1

}
= [−1, 1].

On the other hand, the only real number x satisfying that |x| ≤ − 1
n
for all integers n ≥ 1 is x = 0:

indeed, if |x| > 0, we can find an integer n ≥ 1 such that |x| > − 1
n
. We conclude therefore that

∞⋂
n=1

Cn =

{
x ∈ R : − 1

n
≤ x ≤ 1

n
for each integer n ≥ 1

}
= {0}.

0.1.2 Partitions of Sets

We say that two sets Xi and Xj are disjoint if Xi ∩Xj = ∅. Even more, if the indexed collection

of sets {Xi}i∈I satisfies the condition that the sets Xi and Xj are disjoint for each pair of distinct

indices i, j ∈ I, then we say that {Xi}i∈I is pairwise disjoint (or mutually exclusive). Often,

we will abuse terminology by saying that the sets Xi are pairwise disjoint for each element i ∈ I.
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Example 0.1.22. Consider the sets A = {1, 4, 7}, B = {2, 5, 8}, and C = {3, 6, 9}. One can readily

verify that A ∩B = A ∩ C = B ∩ C = ∅, hence the set {A,B,C} is pairwise disjoint.

Example 0.1.23. Consider the sets D = {1, 3, 5, 7}, E = {2, 4, 6, 8}, and F = {3, 5, 7, 9}. We have

that D ∩ E = E ∩ F = ∅ but D ∩ F = {3, 5, 7}, hence the set {D,E, F} is not pairwise disjoint.

Observe that if Xi = ∅ for any index i, then Xi ∩Xj = ∅ for all indices j by the Going-Down

Property of Set Intersection, hence any indexed collection of sets {Xi}i∈I containing the empty set

is pairwise disjoint. Consequently, we may restrict our attention to collections of nonempty pairwise

disjoint sets. We say that an indexed collection of sets P = {Xi}i∈I forms a partition of a set X if

(a.) the sets Xi are nonempty, i.e., Xi ̸= ∅ for each element i ∈ I;

(b.) the sets Xi cover the set X, i.e., X = ∪i∈IXi; and

(c.) the sets Xi are pairwise disjoint, i.e., Xi ∩Xj = ∅ for every pair of distinct indices i, j ∈ I.

Example 0.1.24. Every set X admits a canonical partition X = {{x}}x∈X indexed by the single-

ton sets {x} for each element x ∈ X; however, many sets admit more interesting partitions.

Example 0.1.25. Consider the sets A = {1, 4, 7}, B = {2, 5, 8}, and C = {3, 6, 9} of Example

0.1.22. Considering that the sets A, B, and C are pairwise disjoint and A∪B ∪C = {1, 2, . . . , 9} =

[9], it follows that the set P = {A,B,C} constitutes a partition of the finite set [9] = {1, 2, . . . , 9}.
Conversely, even though the nonempty sets D = {1, 3, 5, 7}, E = {2, 4, 6, 8}, and F = {3, 5, 7, 9}

of Example 0.1.23 satisfy [9] = D ∪ E ∪ F, they are not pairwise disjoint and do not partition [9].

Example 0.1.26. Consider the set Z of integers. Given any integer n, divide n by 3 to obtain unique

integers q and r (the quotient and remainder of this division) such that 0 ≤ r ≤ 2. Consequently,

every integer n can be written as n = 3q+ r for some unique integers q and 0 ≤ r ≤ 2. We conclude

that Z = X0 ∪X1 ∪X2 is a partition of Z with Xr = {3q + r | q ∈ Z} for each integer 0 ≤ r ≤ 2.

Example 0.1.27. Every nonzero rational number can be written uniquely as a reduced fraction
p
q
for some nonzero integers p and q that have no common divisors other than 1. Consider the

indexed collection of sets {Dq}∞q=1 of nonzero reduced fractions with denominator q, i.e.,

Dq =

{
p

q
: p, q ∈ Z \ {0} and p and q have no common divisors other than 1

}
.

Explicitly, we have that

D1 = {. . . ,−2,−1, 1, 2, . . . }, D2 =

{
. . . ,−3

2
,−1

2
,
1

2
,
3

2
, . . .

}
, and D3 =

{
. . . ,−2

3
,−1

3
,
1

3
,
2

3
, . . .

}
.

Later in the semester, we will be able to prove that Dq and Dr are disjoint for any pair of distinct

positive integers q and r. Considering that every nonzero rational number can be written as a reduced

fraction, it follows that the collection of nonzero rational numbers is partitioned by {Dq}∞q=1.
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0.1.3 Cartesian Products of Sets

Given any nonempty set X, for any elements x1, x2 ∈ X, the ordered pair (x1, x2) is simply an

ordered list with first coordinate x1 and second coordinate x2. Crucially, the ordered pairs (x1, x2)

and (x2, x3) are equal if and only if x1 = x2 = x3 for any elements x1, x2, x3 ∈ X. We are already

familiar with ordered pairs of real numbers: indeed, the concept arises naturally in our high school

mathematics courses from intermediate algebra to calculus. Concretely, we refer to the set X × Y

of all ordered pairs (x, y) such that x ∈ X and y ∈ Y as the Cartesian product of X and Y.

X × Y = {(x, y) | x ∈ X and y ∈ Y }

Example 0.1.28. Consider the sets X = {−1, 1} and Y = {1, 2, 3}. We have that

X × Y = {(−1, 1), (−1, 2), (−1, 3), (1, 1), (1, 2), (1, 3)} and

Y ×X = {(1,−1), (1, 1), (2,−1), (2, 1), (3,−1), (3, 1)}.

Consequently, the Cartesian product of sets is in general not commutative: indeed, the sets X × Y

and Y ×X from above are not equal because we have that (−1, 1) ∈ X × Y and (−1, 1) /∈ Y ×X.

Even more, we may also consider the Cartesian product of a set with itself. We have that

X ×X = {(−1,−1), (−1, 1), (1,−1), (1, 1)} and

Y × Y = {(1, 1), (1, 2), (1, 3), (2, 1), (2, 2), (2, 3), (3, 1), (3, 2), (3, 3)}.

Example 0.1.29. Observe that the Cartesian product Z×Z = {(a, b) | a and b are integers} is the

collection of all integer points in the Cartesian plane R×R = {(x, y) | x and y are real numbers}.
Example 0.1.30. Given any real univariate function f : R → R, the graph of f consists of all

ordered pairs (x, f(x)) such that x is in the domain of f. Explicitly, if we assume that Df is the

domain of f and Rf is the range of f, then the graph of f is given by the Cartesian product

Gf = Df ×Rf = {(x, f(x)) | x ∈ Df and f(x) ∈ Rf}.

Concretely, if f(x) = 2x+ 3, then the graph of f is given by Gf = {(x, 2x+ 3) | x ∈ R}.
Crucially, if X and Y are finite sets with cardinalities |X| and |Y |, then the Cartesian product

X × Y has cardinality |X||Y | because an element of X × Y is uniquely determined by the ordered

pair (x, y). Consequently, we have that ∅ × Y = ∅ = X × ∅ for any finite sets X and Y. Even if

X and Y are infinite, the Cartesian product with the empty set results in the empty set.

Proposition 0.1.31 (Cartesian Product of Finite Sets). Consider any finite sets X and Y.

1.) We have that |X×Y | = |X||Y |. Consequently, the cardinality of the Cartesian product of any

pair of finite sets is the product of the cardinalities of the underlying sets.

2.) We have that ∅×Y = ∅ = X×∅. Consequently, the Cartesian product of any finite set with

the empty set is the empty set. Even more, this equality holds whenever X and Y are infinite.

Proof. We will prove only the last statement of the proposition since the proof of the first statement

is provided above. Certainly, if X and Y are finite, then |∅× Y | = |∅||Y | = 0 = |X||∅| = |X ×∅|
so that ∅× Y = ∅ = X ×∅. We may assume therefore that X and Y are infinite. By definition of

the Cartesian product, we have that ∅× Y consists of all ordered pairs (x, y) such that x ∈ ∅ and

y ∈ Y. Considering that there are no such elements x ∈ ∅, there are no such ordered pairs.
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0.1.4 Relations, Equivalence Relations, and Partial Orders

Given any sets X and Y, a relation from X to Y is any subset R of the Cartesian product X ×Y.

Explicitly, a relation R from X to Y consists of ordered pairs (x, y) such that x ∈ X and y ∈ Y. We

say that an element x ∈ X is related to an element y ∈ Y by R if (x, y) ∈ R, and we write that

x R y in this case; otherwise, if (x, y) /∈ R, then x is not related to y by R, and we write x ̸̸R y.

Example 0.1.32. Consider the sets X = {−1, 1} and Y = {1, 2, 3} of Example 0.1.28. Observe

that |X × Y | = |X||Y | = 6, hence there are |P (X × Y )| = 26 possible relations from X to Y. We

may define one such relation R = {(1, 1), (1, 2), (1, 3)} from X to Y. Under this relation, it holds

that 1 R 1, 1 R 2, and 1 R 3 so that 1 is related to each of the elements of Y. Conversely, we have

that −1 ̸R 1, −1 ̸R 2, and −1 ̸R 3 so that −1 is not related to any of the elements of Y.

Every relation R from a set X to a set Y induces two important sets: namely, the collection

dom(R) = {x ∈ X | (x, y) ∈ R for some element y ∈ Y }

consists of all elements in X are related to some element of Y by R; it is called the domain of the

relation R from X to Y. Likewise, the range of the relation R from X to Y is given by

range(R) = {y ∈ Y | (x, y) ∈ R for some element x ∈ X}

and consists of all elements y ∈ Y for which there exists an element of x ∈ X that is related to y

by R. Crucially, the domain of a relation R from X to Y only concerns the first coordinate of an

element of R, and the range of R only takes into account the second coordinate of an element of R.

Example 0.1.33. Consider the relationR = {(1, 1), (1, 2), (1, 3)} fromX = {−1, 1} to Y = {1, 2, 3}
of Example 0.1.32. We have that dom(R) = {1} and range(R) = {1, 2, 3} = Y.

Given any relation R from a set X to a set Y, we may define the inverse relation

R−1 = {(y, x) | (x, y) ∈ R}.

Crucially, if R is a relation from X to Y, then R−1 is a relation from Y to X, i.e., R−1 ⊆ Y ×X.

Example 0.1.34. Consider the relation R = {(1, 1), (1, 2), (1, 3)} from {−1, 1} to {1, 2, 3} of Exam-

ple 0.1.32. We have that R−1 = {(1, 1), (2, 1), (3, 1)}, dom(R−1) = {1, 2, 3}, and range(R−1) = {1}.
We refer to a subset R of the Cartesian product X×X as a relation on X. Every set X admits

a relation ∆X called the diagonal of X that consists precisely of the elements of X×X of the form

(x, x). Put another way, the diagonal of X is the relation ∆X = {(x, x) | x ∈ X}. Observe that if

X is a finite set with cardinality |X|, then the cardinality of X ×X is |X|2, hence there are a total

of 2|X|2 possible relations on a set X simply because there are as many subsets of X ×X.

Example 0.1.35. Consider the set X = {−1, 1}. We may define relations

∆X = {(−1,−1), (1, 1)} with dom(∆X) = {−1, 1} = range(∆X),

R1 = {(−1, 1), (1,−1)} with dom(R1) = {−1, 1} = range(R1), and

R2 = {(−1,−1), (−1, 1)} with dom(R2) = {−1} and range(R2) = {−1, 1}.

Observe that ∆−1
X = ∆X and R−1

1 = R1 but R−1
2 = {(−1,−1, ), (1,−1)} is not its own inverse.
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We will continue to assume thatX is an arbitrary set. Recall that a relation onX is by definition

a subset R of the Cartesian product X×X.We will say that R is reflexive if and only if (x, x) ∈ R

for all elements x ∈ X if and only if R contains the diagonal ∆X of X if and only if R ⊇ ∆X . Even

more, if it holds that (y, x) ∈ R whenever (x, y) ∈ R, then R is symmetric. Last, if (x, y) ∈ R and

(y, z) ∈ R together imply that (x, z) ∈ R, then we refer to the relation R as transitive.

Example 0.1.36. Consider the following relations on the set X = {x, y, z}.

R1 = {(x, y), (y, z)}
R2 = {(x, x), (x, y), (y, y), (y, z), (z, z)}
R3 = {(x, y), (y, x)}
R4 = {(x, y), (y, z), (x, z)}
R5 = {(x, x), (x, y), (y, x), (y, y), (y, z), (z, y), (z, z)}
R6 = {(x, x), (x, y), (x, z), (y, y), (y, z), (z, z)}
R7 = {(x, x), (x, y), (y, x), (y, y)}
R8 = {(x, x), (x, y), (x, z), (y, x), (y, y), (y, z), (z, x), (z, y), (z, z)}

Observe that R1 is not reflexive because (x, x) does not lie in R1; it is not symmetric because (x, y)

lies in R1 and yet (y, x) does not lie in R1; and it is not transitive because (x, y) and (y, z) both lie

in R1 and yet (x, z) does not lie in R1. We note that R2 is reflexive, but it is not symmetric because

it contains (x, y) but not (y, x), and it is not transitive because it contains (x, y) and (y, z) but not

(x, z). Continuing in this manner, the reader should verify the properties of the following table.

R1 R2 R3 R4 R5 R6 R7 R8

reflexive ✓ ✓ ✓ ✓
symmetric ✓ ✓ ✓ ✓
transitive ✓ ✓ ✓ ✓

Example 0.1.37. Consider the relation R defined on the set Z of integers such that for any pair

of integers x, y ∈ Z, we have that x R y if and only if x ≤ y. Certainly, every integer x is equal to

itself, hence we have that x ≤ x so that R is reflexive; however, we note that R is not symmetric

since the strict inequality 0 < 1 implies that 0 R 1 and yet 1 ̸R 0. Last, it is straightforward to

verify that R is transitive because if x R y and y R z, then x ≤ y ≤ z so that x ≤ z and x R z.

Example 0.1.38. Consider the relation S defined on the set Z of integers such that for any integers

x, y ∈ Z, we have that x S y if and only if x ̸= y. Contrary to Example 0.1.37, this relation is

symmetric but neither reflexive nor transitive: indeed, one can readily check that x S y if and only

if y S x, hence S is symmetric; however, we have that 0 = 0 so that 0 ̸S 0 and S is not reflexive.

Likewise, we have that 0 ̸= 1 and 1 ̸= 0 so that 0 S 1 and 1 S 0 but 0 ̸S 0, hence S is not transitive.

Example 0.1.39. Consider the relation D defined on the set R of real numbers such that x D y if

and only if |x − y| ≤ 1. We can immediately verify that D is reflexive and symmetric: indeed, we

have that |x−x| = 0 so that x D x and |y−x| = |x−y| so that y D x if and only if x D y; however,

0 D 1 and 1 D 2 do not together imply that 0 D 2 because |2− 0| > 1, so D is not transitive.

Relations that are reflexive, symmetric, and transitive are defined as equivalence relations.
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Example 0.1.40. Consider any set X. We may define a relation R on X by declaring that x R y if

and only if x = y. Equality is reflexive because x = x holds for all elements x ∈ X; it is symmetric

because x = y implies that y = x for any elements x, y ∈ X; and it is transitive because if x = y

and y = z, then x = y = z implies that x = z for all elements x, y, z ∈ X. Consequently, equality is

an equivalence relation. We synthesize the result of this example in the following proposition.

Proposition 0.1.41. Given any set X, the diagonal ∆X = {(x, x) | x ∈ X} of X is an equivalence

relation on X. Explicitly, every set admits at least one equivalence relation on itself.

Proof. Observe that as a relation on X, the diagonal of X captures equality of the elements of X:

if (x, y) ∈ ∆X , then we must have that x = y. Conversely, if x = y, then (x, y) ∈ ∆X . Put another

way, the relation ∆X can be identified with the equality equivalence relation of Example 0.1.40.

Example 0.1.42. Consider the collection C1(R) of functions f : R → R such that the first derivative

f ′(x) of f(x) is continuous for all real numbers x. We may define a relation R on C1(R) such that

(f, g) ∈ R if and only if f ′(x) = g′(x) for all real numbers x. Because R is defined by equality and

equality is reflexive, symmetric, and transitive, it follows that R is an equivalence relation on C1(R).

Example 0.1.43. Consider the relation R defined on the set Z of integers such that x R y if and

only if y−x = 2k for some integer k. Considering that x−x = 0 = 2 ·0, it follows that R is reflexive.

Even more, if y − x = 2k for some integer k, then x − y = −(y − x) = 2(−k) for the integer −k,
hence R is symmetric. Last, if y − x = 2k and z − y = 2ℓ for some pair of integers k and ℓ, then

z − x = (z − y) + (y − x) = 2ℓ + 2k = 2(ℓ + k) for the integer ℓ + k. Consequently, the relations

x R y and y R z together yield that x R z. We conclude that R is an equivalence relation on Z.

Example 0.1.44. Often, it is useful to determine if a relation is an equivalence relation by exam-

ining its elements explicitly. Consider the following relation defined on the set [5] = {1, 2, 3, 4, 5}.

R = {(1, 1), (1, 3), (1, 5), (2, 2), (2, 4), (3, 1), (3, 3), (3, 5), (4, 2), (4, 4), (5, 1), (5, 3), (5, 5)}

Considering that R contains the diagonal of [5], it follows that R is reflexive. Put another way, we

have that (x, x) ∈ R for all elements x ∈ [5]. Even more, for each element (x, y) ∈ R, we have that

(y, x) ∈ R so that R is symmetric. Last, one can readily verify that if (x, y) and (y, z) both lie in

R, then (x, z) lies in R, hence R is transitive. We conclude that R is an equivalence relation on [5].

Given an equivalence relation E defined on a set X, we say that x and y are equivalent modulo

E provided that x is related to y by E. We note that this convention is due to Carl Friedrich Gauss

to express that x and y are “the same up to differences accounted for by E.” We may define the

equivalence class [x] of an element x ∈ X modulo the equivalence relation E as the set of elements

y ∈ X that are equivalent to x modulo E. Consequently, the equivalence class of x modulo E is

[x] = {y ∈ X | y E x} = {y ∈ X | (y, x) ∈ E}.

Example 0.1.45. Every element of a set X lies in its own equivalence class modulo the equivalence

relation ∆X = {(x, x) | x ∈ X} because the elements of ∆X are precisely the ordered pairs (x, x).

Consequently, the equivalence class of any element x ∈ X modulo ∆X is the singleton [x] = {x}.
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Example 0.1.46. Consider the equivalence relation R defined on the set C1(R) of Example 0.1.42.

Given any functions f, g ∈ C1(R), because f ′(x) and g′(x) are continuous for all real numbers x, it

follows that f(x) − g(x) is continuous and differentiable on every open interval of the form (0, x).

Consequently, the Mean Value Theorem ensures the existence of a real number 0 < c < x such that

f(x)− g(x) = [f ′(c)− g′(c)]x+ [f(0)− g(0)].

Observe that if f ′(x) = g′(x) for all real numbers x, then f ′(c) − g′(c) = 0, and there exists a real

number C such that g(x) = f(x) +C. Conversely, if g(x) = f(x) +C for some real number C, then

f ′(x) = g′(x). We conclude that the equivalence classes of C1(R) modulo R are given precisely by

the sets [f ] = {g ∈ C1(R) | (g, f) ∈ R} = {g ∈ C1(R) | g(x) = f(x) + C for some real number C}.
Example 0.1.47. Consider the equivalence relation R of Example 0.1.43. By definition, if x = 2k

for some integer k, then x−0 = 2k, hence (x, 0) lies in R. Conversely, if (x, 0) lies in R, then x = 2k

for some integer k. We conclude that the equivalence class of 0 modulo R is given by

[0] = {x ∈ R | (x, 0) ∈ R} = {x ∈ R | x = 2k for some integer k}.

Likewise, if x = 2k + 1 for some integer k, then x− 1 = 2k for some integer k so that (x, 1) lies in

R. Even more, if (x, 1) lies in R, then x − 1 = 2k and x = 2k + 1 for some integer k. Considering

this in terms of R, we conclude that the equivalence class of 1 modulo R is given by

[1] = {x ∈ R | (x, 1) ∈ R} = {x ∈ R | x = 2k + 1 for some integer k}.

Every integer is of the form 2k or 2k + 1, hence these are the equivalence classes of Z modulo R.

Example 0.1.48. Consider the equivalence relation R of Example 0.1.44. Each of the integers 1,

3, and 5 are equivalent modulo R because (1, 3) and (3, 5) lie in the equivalence relation R. On the

other hand, the integers 2 and 4 are equivalent modulo R because (2, 4) lies in R; thus, there are two

distinct equivalence classes modulo R — namely, [1] = {1, 3, 5} = [3] = [5] and [2] = {2, 4} = [4].

Given any nonempty relation E defined on a nonempty set X, we recall that E is an equivalence

relation provided that E is reflexive, symmetric, and transitive. Each equivalence relation E defined

on X induces a collection of sets defined on X called the equivalence classes of the elements of X.

Explicitly, the equivalence class [x] of an element x ∈ X is defined by [x] = {y ∈ X | (y, x) ∈ E}.
We demonstrate next that a pair of equivalence classes of elements of X modulo E are either equal

or disjoint; as a corollary, we obtain a relationship between equivalence relations and partitions.

Proposition 0.1.49 (Equality of Equivalence Classes). Consider any equivalence relation E defined

on a nonempty set X. Given any elements x, y ∈ X, we have that [x] = [y] if and only if (x, y) ∈ E.

Proof. By definition of [x], for any element z ∈ [x], we have that (z, x) ∈ E, hence the symmetry of

the equivalence relation E yields that (x, z) ∈ E. Given that [x] = [y], we have that z ∈ [y] so that

(z, y) ∈ E. Last, the transitivity of E ensures that (x, y) ∈ E because (x, z) and (z, y) lie in E.

Conversely, we will assume that (x, y) ∈ E. We must demonstrate that [x] ⊆ [y] and [y] ⊆ [x].

Given any element z ∈ [x], we have that (z, x) ∈ E. By assumption that (x, y) ∈ E, the transitivity

of the equivalence relation E yields that (z, y) ∈ E so that z ∈ [y]. Likewise, for any element w ∈ [y],

we have that (w, y) ∈ E. By the symmetry of the equivalence relation E, we have that (y, x) ∈ E by

assumption that (x, y) ∈ E, hence the transitivity of E yields that (w, x) ∈ E so that w ∈ [x].

https://en.wikipedia.org/wiki/Mean_value_theorem
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Proposition 0.1.50 (Equivalence Classes Are Either the Same or Disjoint). Consider any equiva-

lence relation E defined on a nonempty set X. Given any elements x, y ∈ X, the classes [x] and [y]

of x and y modulo E are the same or disjoint. Explicitly, we must have that [x] = [y] or [x]∩[y] = ∅.

Proof. Consider any pair [x] and [y] of equivalence classes of a set X modulo an equivalence relation

E. We have nothing to prove if [x] ∩ [y] = ∅, hence we may assume that this is not the case and

prove that [x] = [y]. Concretely, we will assume that there exists an element w ∈ [x]∩ [y]. Crucially,

by definition of the equivalence classes of X modulo E, we have that (w, x) ∈ E and (w, y) ∈ E.

By assumption that E is an equivalence relation, it follows that (x,w) ∈ E by symmetry, hence the

transitivity of E together with the inclusions (x,w), (w, y) ∈ E yield that (x, y) ∈ E. By Proposition

0.1.49, we conclude that [x] = [y], hence the proposed result is in fact established.

Corollary 0.1.51 (Equivalence Relations and Partitions). Each equivalence relation on a nonempty

set X induces a partition of X. Each partition of X induces an equivalence relation on X.

Proof. By Proposition 0.1.50, for any equivalence relation E on a nonempty set X, the collection P
of distinct equivalence classes of X modulo E is pairwise disjoint. Considering that every element

of X lies in its own equivalence class, we conclude that X = ∪C∈PC is a partition of X.

Conversely, we will assume that P = {Xi}i∈I is a partition of X indexed by some set I. Consider

the relation EP = {(x, y) | x, y ∈ Xi for some index i ∈ I} ⊆ X ×X. By definition of a partition,

every element x ∈ X lies in Xi for some index i ∈ I, hence we have that (x, x) ∈ EP for every

element x ∈ X so that EP is reflexive. By definition of EP , if (x, y) ∈ EP , then (y, x) ∈ EP , hence

EP is symmetric. Last, if (x, y), (y, z) ∈ EP , then x, y ∈ Xi and y, z ∈ Xj for some indices i, j ∈ I.

By definition of a partition, we have that Xi ∩ Xj = ∅ if and only if i and j are distinct, hence

we must have that i = j by assumption that y ∈ Xi ∩ Xj. We conclude that (x, z) ∈ Xi so that

(x, z) ∈ EP and EP is transitive. Ultimately, we find that EP is an equivalence relation on X.

Example 0.1.52. Consider the equivalence relation R of Example 0.1.44. By Corollary 0.1.51, the

collection of distinct equivalence classes of [5] modulo R provides a partition of [5]. By Example

0.1.48, the distinct equivalence classes of [5] modulo R are [1] = {1, 3, 5} and [2] = {2, 4}, hence the
underlying partition of [5] induced by the equivalence relationR is P = {[1], [2]} = {{1, 3, 5}, {2, 4}}.
Example 0.1.53. Consider the following partition P = {R0, R1, R2, R3} of the set Z of integers.

R0 = {. . . ,−8,−4, 0, 4, . . . } R2 = {. . . ,−6,−2, 2, 6, . . . }
R1 = {. . . ,−7,−3, 1, 5, . . . } R3 = {. . . ,−5,−1, 3, 7, . . . }

By Corollary 0.1.51, the distinct sets in the partition P constitute the distinct equivalence classes of

an equivalence relation EP on Z. Explicitly, we have that (x, y) ∈ EP if and only if x, y ∈ Ri for some

integer 1 ≤ i ≤ 4. Consequently, the distinct equivalence classes of Zmodulo the equivalence relation

EP are R0, R1, R2, and R3. Observe that (0, 4) ∈ EP holds because 0, 4 ∈ R0 and (1, 5) ∈ EP holds

because 1, 5 ∈ R1, but neither (0, 2) nor (1, 3) lie in EP . By Proposition 0.1.49, a pair of equivalence

classes are distinct if and only if their representatives are related, hence the distinct equivalence

classes of Z modulo EP are [0], [1], [2], and [3] or similarly [4], [5], [6], and [7] and so on.

Last, we say that a relation R defined on a set X is antisymmetric if for every pair of elements

x, y ∈ X, the inclusions (x, y) ∈ R and (y, x) ∈ R together imply that x = y. Equivalence relations
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are reflexive, symmetric, and transitive relations on a set; however, if we replace the requirement

of the symmetry condition with the property of antisymmetry, then we obtain a partial order on

the set. Explicitly, a partial order P on X is a subset P ⊆ X ×X that is reflexive, antisymmetric,

and transitive. Every set admits at least one partial order since the diagonal is a partial order.

Proposition 0.1.54. Given any set X, the diagonal ∆X of X is a partial order on X.

Like with equivalence relations, there are many interesting examples of partial orders.

Example 0.1.55. Observe that the real numbers R are partially ordered via the usual less-than-

or-equal-to ≤. Put another way, the relation P = {(x, y) ∈ R× R | x ≤ y} is a partial order on R.
Explicitly, we have that x = x so that x ≤ x and (x, x) ∈ P for all real numbers x. Likewise, if we

have that (x, y), (y, x) ∈ P, then x ≤ y and y ≤ x together imply that x = y. Last, if we assume

that (x, y), (y, z) ∈ P, then x ≤ y and y ≤ z together imply that x ≤ z so that (x, z) ∈ P.

Example 0.1.56. Divisibility constitutes a partial order on the set Z>0 of positive integers. Con-

sider the relation D = {(a, b) ∈ Z>0×Z>0 | a divides b}. Observe that D is reflexive since a divides

a. Even more, if a divides b and b divides a, then there exist integers m and n such that b = am and

a = bn; together, these identities yield that a = bn = amn. Cancelling a factor of a from both sides

gives that mn = 1, which in turn implies that m = n = 1 because a and b are positive. Ultimately,

this proves that a = b, hence D is antisymmetric. Last, if a divides b and b divides c, then a divides

c: indeed, we have that b = am and c = bn together yield that c = bn = (am)n = a(mn).

Every set admits a partial order via the diagonal, hence every set is a partially ordered set;

however, there can be many ways to view a set as a partially ordered set. We say that a pair of

elements p and q of a partial order P on a set X are comparable if it holds that either (p, q) ∈ P

or (q, p) ∈ P ; otherwise, the elements p and q are said to be incomparable. Every pair of distinct

prime numbers are incomparable with respect to the partial order of divisibility on the non-negative

integers. Conversely, if every pair of elements p, q ∈ P are comparable, then P is a total order on

X. Observe that if Y ⊆ X, then we may define a partial order P |Y = {(y1, y2) ∈ Y ×Y | (y1, y2) ∈ P}
on Y by viewing the elements of Y as elements of X. If P |Y is a total order on Y ⊆ X, then we say

that Y is a chain (with respect to P ) in X. We say that an element x0 ∈ X is an upper bound

of Y (with respect to P ) if it holds that (y, x0) ∈ P for every element y ∈ Y. We will also say that

an element x0 ∈ X is maximal (with respect to P ) if it does not hold that (x0, x) ∈ P for any

element x ∈ X \ {x0}. Our next theorem combines these ingredients to comprise one of the most

ubiquitous results in mathematics (and especially in the ideal theory of commutative algebra).

Theorem 0.1.57 (Zorn’s Lemma). Consider any partial order P defined on any set X.With respect

to P, if every chain Y in X has an upper bound in Y, then Y admits a maximal element y0 ∈ Y.

0.1.5 Congruence Modulo n

We say that a nonzero integer a divides an integer b if there exists an integer c such that b = ac.

We will write a | b in this case, and we will typically say that b is divisible by a. Given any nonzero

integer n, we say that a pair of integers a and b are congruent modulo n if it holds that n divides

b− a or n | (b− a). Conventionally, if a and b are congruent modulo n, we write b ≡ a (mod n).

Example 0.1.58. We have that 7 ≡ 3 (mod 4) because 7− 3 = 4 is divisible by 4.
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Example 0.1.59. We have that 5 ≡ 21 (mod 4) because 5− 21 = −16 = 4(−4) is divisible by 4.

Example 0.1.60. We have that 11 ̸≡ 8 (mod 4) because 11− 8 = 3 is not divisible by 4.

Given any nonzero integer n, we note that congruence modulo n induces a relation Rn on the

set Z of integers: indeed, for any integers a and b, we have that (a, b) ∈ Rn if and only if a Rn b if

and only if b ≡ a (mod n) if and only if n divides b− a. Even more, the following proposition and

Proposition 0.1.62 guarantee that the relation of congruence modulo n admits “nice” properties.

Proposition 0.1.61 (Properties of Congruence Modulo n). Consider any nonzero integer n and

any integers a, b, and c. Each of the following properties of congruence modulo n holds.

1.) (Identity Property) We have that a ≡ 0 (mod n) if and only if n divides a.

2.) (Well-Defined Property) We have that b ≡ a (mod n) if and only if b− a ≡ 0 (mod n).

3.) (Reflexive Property) We have that a ≡ a (mod n) for any integer a.

4.) (Symmetric Property) We have that b ≡ a (mod n) if and only if a ≡ b (mod n).

5.) (Transitive Property) If b ≡ a (mod n) and c ≡ b (mod n), then c ≡ a (mod n).

6.) (Additive Property) We have that b ≡ a (mod n) if and only if b+ c ≡ a+ c (mod n).

7.) (Multiplicative Property) If b ≡ a (mod n), then cb ≡ ca (mod n).

8.) (Exponentiation Property) If b ≡ a (mod n), then bk ≡ ak (mod n) for any integer k ≥ 0.

Proof. (1.) We have that a ≡ 0 (mod n) if and only if n divides a− 0 if and only if n divides a.

(2.) By the definition and Identity Property of congruence modulo n, we have that b ≡ a (mod n)

if and only if n divides b− a if and only if b− a ≡ 0 (mod n).

(3.) Considering that a− a = 0 = n · 0, it follows that n divides a− a so that a ≡ a (mod n).

(4.) We have that b ≡ a (mod n) if and only if n divides b− a if and only if n divides −(a− b)

if and only if n divides a− b if and only if a ≡ b (mod n).

(5.) Given that b ≡ a (mod n) and c ≡ b (mod n), by definition, there exist integers k and ℓ

such that b− a = nk and c− b = nℓ. Observe that c− a = (c− b) + (b− a) = nk + nℓ = n(k + ℓ),

hence n divides c− a so that c ≡ a (mod n) by definition of congruence modulo n.

(6.) We have that b ≡ a (mod n) if and only if n divides b− a if and only if b− a = nk for some

integer k if and only if −b + a = (−b) − (−a) = n(−k) for some integer k if and only if n divides

−b− (−a) if and only if −b ≡ −a (mod n) by definition of congruence modulo n.

(7.) By definition of congruence modulo n, we have that b ≡ a (mod n) if and only if n divides

b− a if and only if n divides (b+ c)− (a+ c) if and only if b+ c ≡ a+ c (mod n).

(8.) By definition of congruence modulo n, if b ≡ a (mod n), then n divides b − a so that n

divides c(b− a). Considering that c(b− a) = cb− ca, it follows that cb ≡ ca (mod n).

(9.) By the Multiplicative Property, if b ≡ a (mod n), we have that b2 = b · b ≡ b · a (mod n)

and a2 = a · a ≡ a · b (mod n). Considering that b · a = a · b, the Transitive Property of congruence

modulo n yields that b2 = b · b ≡ b · a = a · b ≡ a · a = a2 (mod n). By the same rationale, we have

that b3 = b · b2 ≡ b · a2 = a · a2 = a3 (mod n). Continuing in this manner establishes the result.
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Given any nonzero integer n, the relation Rn defined on the set Z of integers such that a Rn b if

and only if b ≡ a (mod n) is commonly referred to as congruence modulo n. By the third, fourth,

and fifth properties of Proposition 0.1.61, congruence modulo n is an equivalence relation on Z.

Proposition 0.1.62. Congruence modulo any nonzero integer n is an equivalence relation on Z.

Consider the equivalence class [a] of any integer a modulo the equivalence relation of congruence

modulo n. Conventionally, we refer to [a] as the class of a modulo n. By definition, we have that

[a] = {b ∈ Z | b ≡ a (mod n)} = {b ∈ Z | b− a = nq for some integer q} = {nq + a | q ∈ Z}.

Consequently, the equivalence class of a modulo n consists of sums of integer multiples of n and a.

Example 0.1.63. Congruence modulo 1 is an equivalence relation on Z, hence we may seek to

determine the equivalence classes of the integers modulo 1. Considering that every integer is divisible

by 1, it follows that every pair of integers are related by congruence modulo 1: indeed, for any pair

of integers a and b, we have that b − a = 1 · (b − a), hence a and b are congruent modulo 1. But

this implies that every integer is congruent to 0 modulo 1, hence there is only one equivalence class

of integers modulo 1. Explicitly, we have that [0] = {1q + 0 | q ∈ Z} = {q | q ∈ Z} = Z.

Example 0.1.64. Congruence modulo 2 is an equivalence relation on Z with equivalence classes

[0] = {2q + 0 | q ∈ Z} = {. . . ,−4,−2, 0, 2, 4, . . . } and

[1] = {2q + 1 | q ∈ Z} = {. . . ,−3,−1, 1, 3, 5, . . . }.

By Proposition 0.1.50, these are all of the distinct equivalence classes of Z modulo 2. Even more,

by Proposition 0.1.51, we obtain a partition of Z into distinct equivalence classes modulo 2

Z = [0] ∪ [1] = {. . . ,−4,−2, 0, 2, 4, . . . } ∪ {. . . ,−3,−1, 1, 3, 5, . . . }.

Example 0.1.65. Congruence modulo 3 is an equivalence relation on Z with equivalence classes

[0] = {3q + 0 | q ∈ Z} = {. . . ,−6,−3, 0, 3, 6, . . . },
[1] = {3q + 1 | q ∈ Z} = {. . . ,−5,−2, 1, 4, 7, . . . }, and
[2] = {3q + 2 | q ∈ Z} = {. . . ,−4,−1, 2, 5, 8, . . . }.

By Proposition 0.1.50, these are all of the distinct equivalence classes of Z modulo 3. Even more,

by Proposition 0.1.51, we obtain a partition of Z into distinct equivalence classes modulo 3

Z = [0] ∪ [1] ∪ [2] = {. . . ,−6,−3, 0, 3, 6, . . . } ∪ {. . . ,−5,−2, 1, 4, 7, . . . } ∪ {. . . ,−4,−1, 2, 5, 8, . . . }.

Each of the preceding examples is illustrative of the general structure of the equivalence classes

of the integers modulo a nonzero integer n. Concretely, for any nonzero integer n, there are n distinct

equivalence classes of the integers modulo n, and each class consists of sums of integer multiples of

n and a non-negative integer that is strictly smaller than n. We remark that the proof of this fact

follows by the Division Algorithm, hence we will not endeavor to provide such justification at the

moment; however, the reader should consider how the result makes sense intuitively according to

the process of integer division, quotients, remainders, and the definition of congruence modulo n.
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Proposition 0.1.66. Given any nonzero integer n, there are exactly n distinct equivalence classes

of Z modulo n defined by [r] = {nq+ r | q ∈ Z} for each integer 0 ≤ r ≤ n− 1. Consequently, every

nonzero integer n induces a partition of the integers into distinct equivalence classes modulo n

Z =
n−1⋃
r=0

{nq + r | q ∈ Z}.

Congruence modulo a nonzero integer also gives rise to other interesting equivalence relations.

Example 0.1.67. Consider the relation R defined on the set Z of integers such that a R b if and

only if 5b ≡ 2a (mod 3) for any integers a and b. We claim that R is an equivalence relation.

1.) We must first establish that a R a for all integers a. By definition of R, we must prove that

5a ≡ 2a (mod 3). But this is true because 5a− 2a = 3a is divisible by 3 for all integers a.

2.) We establish next that if a R b, then b R a. By definition of R, if a R b, then 5b ≡ 2a (mod 3)

so that 5b−2a = 3k for some integer k. Consequently, we have that 2a−5b = 3(−k). By adding

3a and 3b to both sides of this equation, we obtain 5a−2b = 3(−k)+3a+3b = 3(−k+a+ b).
We conclude that 5a− 2b is divisible by 3 so that 5a ≡ 2b (mod 3) and b R a.

3.) Last, if a R b and b R c, then 5b ≡ 2a (mod 3) and 5c ≡ 2b (mod 3). By definition, there exist

integers k and ℓ such that 5b− 2a = 3k and 5c− 2b = 3ℓ. By taking their sum, we find that

5c− 3b− 2a = (5c− 2b) + (5b− 2a) = 3ℓ+ 3k = 3(ℓ+ k)

so that 5c− 2a = 3(ℓ+ k+ b); therefore, 3 divides 5c− 2a so that 5c ≡ 2a (mod 3) and a R c.

By definition of an equivalence class of Z modulo R, the equivalence class of a modulo R is simply

[a] = {b ∈ Z | a R b} = {b ∈ Z | 5b ≡ 2a (mod 3)} = {b ∈ Z | 5b− 2a = 3k for some integer k}.

Consequently, the class of a modulo R is [a] = {b ∈ Z | 5b = 3k + 2a for some integer k}. Checking
some small values of b yields that [0] = {. . . ,−6,−3, 0, 3, 6, . . . }. Likewise, by definition and a brute-

force check, we have that [1] = {b ∈ Z | 5b = 3k + 2 for some integer k} = {. . . ,−5,−2, 1, 4, 7, . . . }
and [2] = {b ∈ Z | 5b = 3k+4 for some integer k} = {. . . ,−4,−1, 2, 5, 8, . . . }. Every integer belongs

to one of these three distinct equivalence classes modulo R, hence this is an exhaustive list.

0.1.6 The Definition of a Function

Consider any sets X and Y.We have seen previously that a relation from X to Y is any subset of the

Cartesian product X×Y. We will distinguish a relation f from X to Y as a function if and only if

every element of X is the first coordinate of one and only one ordered pair in f. Explicitly, a function

f : X → Y is merely an assignment of each element x ∈ X to a unique (but not necessarily distinct)

element f(x) ∈ Y called the direct image of x under f. We refer to the set X as the domain of

f : X → Y ; the codomain of f is Y ; and the range of f is the set range(f) = {f(x) | x ∈ X} of

second coordinates of elements in f. Out of desire for notational convenience, we may sometimes

omit the letter f : X → Y when defining a function and simply use an arrow X → Y to indicate

the sets involved and an arrow x 7→ y to declare the direct image y ∈ Y of the element x ∈ X.
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Example 0.1.68. Consider the relation f = {(−1, 1), (1,−1)} defined on the set X = {−1, 1}.
Each of the elements of X is the first coordinate of one and only one ordered pair in f, hence

f : X → X is a function; its domain and range are both X. Conventionally, we might recognize

this function as f(x) = −x because it has the effect of swapping the signs of each element x ∈ X.

Example 0.1.69. Consider the relation g = {(x, x−1) | x ∈ R} on the collection R of real numbers.

Every real number is the first coordinate of one and only one ordered pair in g, hence g : R → R is

a function; its domain and range are both R. Conventionally, we might recognize this function as

g(x) = x− 1 because the ordered pairs (x, y) ∈ g satisfy that y = x− 1 for each real number x.

Example 0.1.70. Often in calculus, a function is defined simply by declaring a rule, e.g., h(x) = x2.

Conventionally, the domain of such a function is assumed to be the natural domain, i.e., the largest

subset of the real numbers for which h(x) can be defined. Considering that the square of any real

number is itself a real number, it follows that the domain of h(x) is all real numbers; the range of

h(x) is the collection of all non-negative real numbers because if x ∈ R, then x2 ≥ 0.

But strictly speaking, in general, a function depends intimately on its domain and its codomain.

We will soon see that the functions h : R → R≥0 defined by h(x) = x2 and k : R≥0 → R defined by

k(x) = x2 are quite different from one another, all though the underlying rule of both functions is

the same. Even more, both of these functions are different from ℓ : R≥0 → R≥0 defined by ℓ(x) = x2.

Example 0.1.71. Consider the equivalence relation R defined on the set {1, 2, 3, 4, 5} as in Example

0.1.44. Crucially, we note that R is not a function since the ordered pairs (1, 1) and (1, 3) lie in R.

Generally, an equivalence relation R will never be a function because if (x, y) and (y, x) both lie in

R, then by definition, we must have that (x, x) ∈ R so that R is not a function.

Every set X admits an identity function idX : X → X defined by idX(x) = x. If X is a subset

of Y, then the inclusion X ⊆ Y can be viewed as the function X → Y that sends x 7→ x, where

the symbol x appearing to the left of the arrow 7→ is viewed as an element of X while the symbol

x appearing to the right of the arrow 7→ is viewed as an element of Y ; in the usual notation, the

inclusion may be thought of as the function i : X → Y defined by i(x) = x. Even more, every set

X induces a function δX : X → X ×X that is called the diagonal function (of X) and defined

by δX(x) = (x, x). Later in the course, we will prove that the diagonal ∆X of X is the direct image

of the diagonal function δX of X, hence there should be no confusion in terminologies.

Even if we have never thought of it as such, algebraic operations such as addition, subtraction,

multiplication, and division can be viewed as functions. Explicitly, addition of real numbers is the

function + : R×R → R defined by (x, y) 7→ x+ y. Crucially, the sum of two real numbers is a real

number, hence this function is well-defined, i.e., the image of every element lies in the codomain

of the function. Generally, if X is any set, the function ∗ : X ×X → X that sends (x, y) 7→ x ∗ y
is a binary operation if and only if x ∗ y is an element of X for every pair of elements x, y ∈ X.

Like we mentioned, addition and multiplication are binary operations on the real numbers R.
Consider any pair of functions f : X → Y and g : X → Y. Given any element x ∈ X, there exist

unique elements f(x), g(x) ∈ Y such that (x, f(x)) ∈ f and (x, g(x)) ∈ g. Consequently, if f and g

are equal as sets so that f = g, then (x, f(x)) lies in g; the uniqueness of g(x) yields in turn that

f(x) = g(x). Conversely, if f(x) = g(x) for every element x ∈ X, then we have that

f = {(x, f(x)) | x ∈ X} = {(x, g(x)) | x ∈ X} = g



0.1. SETS, RELATIONS, AND FUNCTIONS 25

so that f and g are equal as sets; this establishes the following important fact about functions.

Proposition 0.1.72 (Equality of Functions). Given any sets X and Y, the functions f : X → Y

and g : X → Y are equal as sets if and only if f(x) = g(x) for all elements x ∈ X.

Every time we define a function f : X → Y, for every subset V ⊆ X, we implicitly distinguish

the collection of elements y ∈ Y such that y = f(v) for some element v ∈ V ; this is denoted by

f(V ) = {f(v) | v ∈ V }

and called the direct image of V (in Y ) under f. Conversely, if W ⊆ Y, the collection of elements

x ∈ X such that f(x) ∈ W is the inverse image of W (in X) under f. Explicitly, we have that

f−1(W ) = {x ∈ X | f(x) ∈ W}.

Example 0.1.73. Consider the function f = {(u, 1), (v, 2), (w, 3), (x, 3), (y, 2), (z, 1)} from the set

X = {u, v, w, x, y, z} to Y = [6] = {1, 2, 3, 4, 5, 6}. We have that range(f) = {1, 2, 3}, but it is just
as true that range(f) = f({u, v, w}) = f({u, x, y}) = f({x, y, z}). Even more, we have that

f−1({2, 3}) = {v, w, x, y} and f−1({4, 5, 6}) = ∅

because the elements 4, 5, 6 ∈ Y do not belong to the second component of any ordered pair in f.

Example 0.1.74. Consider the function g : R → R defined by g(x) = x2. Observe that for any real

number x such that −1 ≤ x ≤ 1, we have that 0 ≤ x2 ≤ 1, hence it follows that g([−1, 1]) = [0, 1].

Likewise, if x2 = g(x) ≥ 4, then x ≥ 2 or x ≤ −2 so that g−1([4,∞)) = (−∞,−2] ∪ [2,∞).

Even if the sets X and Y are finite with small cardinalities |X| and |Y |, the number of functions

f : X → Y grows astonishingly quickly. Explicitly, a function f : X → Y is uniquely determined by

choosing for each element x ∈ X one and only one element y ∈ Y such that f(x) = y. Consequently,

for each element x ∈ X, there are |Y | possible choices for f(x). By denoting the set of functions

f : X → Y as Y X = {f ⊆ X × Y | f : X → Y is a function}, we have that |Y X | = |Y ||X|.

Example 0.1.75. Consider the sets X = {u, v, w, x, y, z} and Y = [6] = {1, 2, 3, 4, 5, 6} of Example

0.1.73. We have that |X| = 6 = |Y |, hence there are |Y ||X| = 66 possible functions f : X → Y.

0.1.7 One-to-One and Onto Functions

We introduce in this section two indispensable properties of a function f : X → Y from a set X to

a set Y. We say that f is one-to-one (or injective) if every pair of distinct elements x1, x2 ∈ X

induces distinct elements f(x1), f(x2) ∈ Y. Equivalently, we say that f is one-to-one if every equality

f(x1) = f(x2) of elements of Y yields the corresponding equality x1 = x2 of elements of X.

Example 0.1.76. Consider the function f = {(−1, 1), (1,−1)} from the set X = {−1, 1} to itself.

Each of the elements x ∈ X corresponds to a distinct element f(x) ∈ X, hence f is one-to-one.

Example 0.1.77. Consider the real function f : R → R defined by f(x) = 3x+ 4. Observe that if

f(x1) = f(x2), then 3x1 + 4 = 3x2 + 4 so that 3x1 = 3x2 and x1 = x2; thus, f is one-to-one.
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Example 0.1.78. Consider the real function f : R≥0 → R defined by f(x) = x2. Observe that if

f(x1) = f(x2), then x
2
1 = x22. By taking the square root of both sides and using the fact that the

domain of f consists of non-negative real numbers, it follows that x1 = x2 so that f is one-to-one.

Example 0.1.79. Consider the real function g : R → R defined by g(x) = x2. Considering that

g(−1) = 1 = g(1) but −1 ̸= 1, it follows that g is not one-to-one. Compare with Example 0.1.78.

Example 0.1.80. Consider the function f = {(u, 1), (v, 2), (w, 3), (x, 3), (y, 2), (z, 1)} from the set

X = {u, v, w, x, y, z} to Y = [6] = {1, 2, 3, 4, 5, 6}. Considering that f(u) = 1 = f(z) but u ̸= z, it

follows that f is not one-to-one; the same holds for f(v) = 2 = f(y) and f(w) = 3 = f(x).

Even more, we say that f : X → Y is onto (or surjective) if for every element y ∈ Y, there

exists an element x ∈ X such that y = f(x). One way to think about the surjective property is that

every element of the codomain Y is “mapped onto” or “covered” by an element of X. Even more

simply, a function f : X → Y is surjective if and only if Y = range(f) = {f(x) | x ∈ X}.

Example 0.1.81. Consider the function f = {(−1, 1), (1,−1)} from the set X = {−1, 1} to itself.

Each of the elements y ∈ X can be written as y = f(x) for some element x ∈ X, hence f is onto.

Example 0.1.82. Consider the real function f : R → R defined by f(x) = 3x + 4 of Example

0.1.77. We claim that f is onto, hence for any real number y, we require a real number x such that

y = f(x) = 3x+4. By solving for x in y = 3x+4, we find that x = 1
3
(y−4). Computing f(x) yields

f(x) = 3x+ 4 = 3 · 1
3
(y − 4) + 4 = (y − 4) + 4 = y

because x = 1
3
(y − 4) by construction, as desired. Consequently, it follows that f is onto.

Example 0.1.83. Consider the real function f : R → R≥0 defined by f(x) = x2. Given any real

number y ≥ 0, we claim that there exists a real number x such that y = x2. By taking x =
√
y (this

is well-defined because y ≥ 0), it follows that f(x) = x2 = (
√
y)2 = y so that f is onto.

Example 0.1.84. Consider the function f = {(u, 1), (v, 2), (w, 3), (x, 3), (y, 2), (z, 1)} from the set

X = {u, v, w, x, y, z} to Y = [6] = {1, 2, 3, 4, 5, 6} as in Example 0.1.80. Considering that 4, 5, and

6 are not the image of any element of X under f, it follows that f is not onto.

Example 0.1.85. Consider the sets X = {a, b, c} and Y = {0, 1, 2, 3}. We cannot possibly find a

function f : X → Y that is onto because the cardinality of X is strictly smaller than the cardinality

of Y ; therefore, it is impossible to assign to each element y ∈ Y a unique element x ∈ X.

We say that a function f : X → Y is bijective if f is both injective and surjective. We may

think of a bijection f : X → Y simply as a relabelling of the elements of Y by the names of elements

of X; in this way, two sets X and Y are “essentially the same” if there exists a bijection f : X → Y.

Often, this property of a bijective function is emphasized in the literature by using the terminology

of “one-to-one correspondence” between X and Y rather than a “bijection” from X to Y.

Proposition 0.1.86. Consider any pair of arbitrary finite sets X and Y.

1.) If there exists an injective function f : X → Y, then |X| ≤ |Y |.

2.) If |X| ≤ |Y |, then there exists an injective function f : X → Y.
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3.) If there exists a surjective function f : X → Y, then |X| ≥ |Y |.

4.) If |X| ≥ |Y |, then there exists a surjective function f : X → Y.

5.) If there exists a bijective function f : X → Y, then |X| = |Y |.

6.) If |X| = |Y |, then there exists a bijective function f : X → Y.

7.) If |X| = |Y |, then a function f : X → Y is injective if and only if it is surjective.

Proof. We will assume throughout the proof that |X| = m and |Y | = n are non-negative integers.

Certainly, if either m or n is zero, then the empty function satisfies the desired properties. Conse-

quently, we may assume that neitherm nor n is zero. We will assume also for notational convenience

that X = {x1, x2, . . . , xm} and Y = {y1, y2, . . . , yn}. We turn our attention to each claim in turn.

(1.) We will assume that there exists an injective function f : X → Y. Consequently, every

element y ∈ Y is obtained from at most one element x ∈ X via y = f(x). Considering that every

element x ∈ X corresponds to a unique element f(x) ∈ Y, we conclude that |X| ≤ |Y |.
(2.) Observe that if m ≤ n, then we may define an injective function f : X → Y by declaring

that f(xi) = yi for each integer 1 ≤ i ≤ m. Explicitly, f is a function because every element xi ∈ X

corresponds to exactly one element yi = f(xi) ∈ Y. Even more, f is injective since for each element

yi ∈ Y, there is at most one element xi ∈ X such that yi = f(xi) by assumption that n ≥ m.

(3.) We will assume that there exists a surjective function f : X → Y. Consequently, for every

element y ∈ Y, there exists an element x ∈ X such that y = f(x). Considering that every element

x ∈ X corresponds to a unique element f(x) ∈ Y, we conclude that |X| ≥ |Y |.
(4.) Conversely, if m ≥ n, then we may define a surjective function f : X → Y by declaring

that f(xi) = yi for each integer 1 ≤ i ≤ m. We have already seen in the previous paragraph that

such a relation is a function; however, by assumption that m ≥ n, it follows that f is surjective

because for every element yi ∈ Y, there exists an element xi ∈ X such that yi = f(xi).

(5.) Combined, parts (a.) and (c.) imply that |X| ≤ |Y | and |X| ≥ |Y | so that |X| = |Y |.
(6.) Combined, parts (b.) and (d.) yield a bijective function f : X → Y defined by f(xi) = yi.

(7.) Last, we will assume that m = n. Consider any function f : X → Y. Observe that if f is

injective, then every element of X maps to a distinct element of Y under f, hence range(f) is a

subset of Y with the same cardinality as Y. We conclude that range(f) = Y so that f is surjective.

Conversely, if f is surjective, then for every element y ∈ Y, there exists an element x ∈ X such that

y = f(x). By assumption that m = n, the element x ∈ X such that y = f(x) must be uniquely

determined by y, hence the image of x ∈ X under f is unique so that f is injective.

Caution: if X and Y are infinite sets, then there need not exist a bijective function f : X → Y.

Explicitly, there is no bijection f : Q → R between the rational numbers and the real numbers.

Caution: if X and Y are infinite sets, then a function f : X → Y can be injective without being

surjective (and vice-versa). Explicitly, the function f : Z → Z defined by f(x) = 2x is injective but

not surjective, and the function g : Q → Z defined by g(p/q) = p is surjective but not injective.

Example 0.1.87. Consider the function f : Z → Z defined by f(x) = −x. Cancelling a minus sign,

we conclude that if f(x) = f(y), then −x = −y yields that x = y so that f is one-to-one. Likewise,

every integer n is the image of −n under f because n = −(−n) = f(−n), hence f is onto.
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Example 0.1.88. Consider the rational function f : R \ {3} → R \ {1} defined by

f(x) =
x− 2

x− 3
.

Cross-multiplying denominators, we note that f(x) = f(y) if and only if (x−2)(y−3) = (x−3)(y−2)

if and only if xy − 3x − 2y + 6 = xy − 2x − 3y + 6 if and only if x = y, hence f is one-to-one.

Conversely, we will prove that f is onto. Behind the scenes, we solve the following equation for x.

y =
x− 2

x− 3

Observe that this identity holds if and only if (x− 3)y = x− 2 if and only if xy− 3y = x− 2 if and

only if xy − x = 3y − 2 if and only if x(y − 1) = 3y − 2 if and only if

x =
3y − 2

y − 1
.

Consequently, for every real number y ∈ R \ {1}, we have that y = f(x) so that f is onto.

Example 0.1.89. Consider the equivalence relation R6 of congruence modulo 6 defined on the set

Z of integers. Conventionally, the collection of equivalence classes of Z modulo 6 is denoted Z/6Z.
Every element of Z/6Z is the equivalence class [a] = {b ∈ Z | b ≡ a (mod 6)} of an integer a modulo

6, hence there are six distinct elements of Z/6Z by Proposition 0.1.62. We will demonstrate in this

example how to define a function from Z/6Z to itself. We may define a relation f : Z/6Z → Z/6Z
by declaring that f([x]) = [5x+3]. By definition, in order to establish that f is a function, we must

verify that if [5x+3] and [5y+3] are distinct, then [x] and [y] are distinct. Concretely, this ensures

that the function f passes the Vertical Line Test. Consequently, we may assume that [x] = [y] and

derive [5x+3] = [5y+3]. (Why?) By Equality of Equivalence Classes, it follows that y ≡ x (mod 6)

so that 6 divides y − x by the Properties of Congruence Modulo n. By definition of divides, there

exists an integer k such that y − x = 6k; in turn, this yields the divisibility relation

(5y + 3)− (5x+ 3) = 5(y − x) = 6(5k).

Considering that 5k is an integer, we conclude that 6 divides the integer (5y+3)− (5x+3) so that

5y+3 ≡ 5x+3 (mod 6). Once again, by Proposition 0.1.49, we conclude that [5x+3] = [5y+3].We

say in this case that the relation f is a well-defined function. Quite to our delight, it happens that

f is a bijection: indeed, we have that [0] = f([3]), [1] = f([2]), [2] = f([1]), [3] = f([0]), [4] = f([5]),

and [5] = f([4]) so that f is both injective and surjective. (One can prove this algebraically.)

0.1.8 Composition of Functions

Every pair of functions f : X → Y and g : Y → Z from any three sets X, Y, and Z give rise to a

third function g ◦ f : X → Z called the composite function defined by (g ◦ f)(x) = g(f(x)). We

may also refer to the function g ◦ f as g composed with f or the composition of f under g.

Example 0.1.90. Consider the sets X = {−1, 1}, Y = {x, y, z}, and Z = {1, 2, 3}. We may define

a pair of functions f : X → Y and g : Y → Z by f = {(−1, x), (1, z)} and g = {(x, 2), (y, 3), (z, 1)}.
Observe that the composite function g ◦ f : X → Z satisfies (g ◦ f)(−1) = g(f(−1)) = g(x) = 2

and (g ◦ f)(1) = g(f(1)) = g(z) = 1. Consequently, we find that g ◦ f = {(−1, 2), (1, 1)}.
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Example 0.1.91. Consider the sets A = {a, b, c, d}, B = {b, c, d, e}, and C = {c, d, e, f}. We may

define a pair of functions f : A → B and g : B → C such that f = {(a, b), (b, c), (c, d), (d, e)} and

g = {(b, c), (c, d), (d, e), (e, f)}. Observe that the composite function g ◦ f : A→ C satisfies that

(g ◦ f)(a) = g(f(a)) = g(b) = c, (g ◦ f)(c) = g(f(c)) = g(d) = e, and

(g ◦ f)(b) = g(f(b)) = g(c) = d, (g ◦ f)(d) = g(f(d)) = g(e) = f.

Consequently, we find that g ◦ f : A→ C satisfies that g ◦ f = {(a, c), (b, d), (c, e), (d, f)}.

Example 0.1.92. Composition of functions ought to be a familiar concept from calculus: indeed,

the Chain Rule for Derivatives gives a formula for the derivative of a composite function. Consider

the functions f : R → R and g : R → R defined by f(x) = ex and g(x) = |x|. We have that

f ◦ g : R → R is defined by (f ◦ g)(x) = f(g(x)) = eg(x) = e|x| and

g ◦ f : R → R is defined by (g ◦ f)(x) = g(f(x)) = |f(x)| = |ex| = ex.

Crucially, the latter holds because ex > 0 for all real numbers x, hence it follows that g ◦ f = f as

real functions. On the other hand, for the real identity function idR : R → R defined by idR(x) = x,

we note that idR ◦f = f since (idR ◦f)(x) = idR(f(x)) = f(x) for all real numbers x. Comparing

the two identities derived in this example yields that g ◦ f = idR ◦f ; however, it is not the case that
g = idR because g(−1) = 1 ̸= −1 = idR(−1). Consequently, we obtain the following important fact.

Proposition 0.1.93 (Function Composition Is Not Cancellative). Given any quadruple of functions

f : X → Y, g : X → Y, h : Y → Z, and j : Y → Z such that h◦f = j◦f and h◦f = h◦g, we cannot
conclude that either h = j or f = g. Put another way, function composition is not cancellative.

Proof. We leave it to the reader to adapt the approach of Example 0.1.92 to determine sets X, Y,

and Z and distinct functions f : X → Y, g : X → Y, and h : Y → Z such that h ◦ f = h ◦ g.

Even though function composition is not cancellative, we will soon come to find that it satisfies

several important properties that make it an indispensable operation in the theory of functions.

Proposition 0.1.94 (Composition of Functions Preserves Injectivity and Surjectivity). Consider

any pair of functions f : X → Y and g : Y → Z.

1.) If f and g are injective, then g ◦ f is injective.

2.) If f and g are surjective, then g ◦ f is surjective.

Put another way, composition of functions preserves injectivity and surjectivity.

Proof. (1.) We must prove that if (g ◦ f)(x1) = (g ◦ f)(x2), then x1 = x2. By assumption that g is

injective, if g(f(x1)) = (g ◦ f)(x1) = (g ◦ f)(x2) = g(f(x2)), then f(x1) = f(x2). But by the same

rationale applied to the injective function f, we conclude that x1 = x2, as desired.

(2.) We must prove that for every element z ∈ Z, we have that z = (g ◦ f)(x) for some element

x ∈ X. By assumption that g is surjective, for every element z ∈ Z, there exists an element y ∈ Y

such that z = g(y). Even more, by hypothesis that f is surjective, there exists an element x ∈ X

such that y = f(x). Combined, these observations yield that z = g(y) = g(f(x)) = (g ◦ f)(x).

https://en.wikipedia.org/wiki/Chain_rule


30 CHAPTER 0. ESSENTIAL TOPICS IN MODERN MATHEMATICS

Corollary 0.1.95 (Composition of Bijective Functions Is Bijective). Given any bijective functions

f : X → Y and g : Y → Z, the composite function g ◦ f : X → Z is bijective.

Proof. Both f and g are injective and surjective, so g ◦ f is injective and surjective.

Proposition 0.1.96 (Composition of Functions Is Associative). Consider any triple of functions

f : W → X, g : X → Y, and h : Y → Z. We have that h ◦ (g ◦ f) = (h ◦ g) ◦ f.

Proof. We must prove that [h ◦ (g ◦ f)](w) = [(h ◦ g) ◦ f ](w) for all elements w ∈ W by Proposition

0.1.72. We will assume that f(w) = x, g(x) = y, and h(y) = z. By definition of the composite

function, we have that (g ◦f)(w) = g(f(w)) = g(x) = y and (h◦g)(x) = h(g(x)) = h(y) = z so that

[h ◦ (g ◦ f)](w) = h((g ◦ f)(w)) = h(y) = z and [(h ◦ g) ◦ f ](w) = (h ◦ g)(f(w)) = (h ◦ g)(x) = z.

Remark 0.1.97. We note that in order to define the composition g ◦ f of any function f : X → Y

under any other function g : Y → Z, it is sufficient but not strictly necessary to assume that the

domain of g contains the codomain of f. Generally, the composite function g ◦ f is well-defined for

any function g : W → Z so long as W ⊇ range(f). Consider to this end the function f : R → R
defined by f(x) = x2, we have that range(f) = {f(x) | x ∈ R} = {x2 | x ∈ R} = R≥0, hence for any

function g : R≥0 → R, the composite function g ◦ f is well-defined. Explicitly, if we assume that

g(x) =
√
x, then (g ◦ f)(x) = g(f(x)) = g(x2) =

√
x2 = |x|; however, if g(x) = ln(x) on its natural

domain, then the composite function g ◦ f is not well-defined because ln(0) is not well-defined.

Proposition 0.1.98 (Composition of Functions Is Not Commutative). Given any pair of functions

f : X → Y and g : Y → Z, we cannot conclude that g ◦ f = f ◦ g.

Proof. By the preceding remark, we must have that Y ⊇ range(f), so if this is not the case, then

g ◦ f is not well-defined. We may assume therefore that Y ⊇ range(f) and X ⊇ range(g) so that

g ◦ f and f ◦ g are both well-defined. Consider the real functions f : R → R and g : R → R defined

by f(x) = 2x+1 and g(x) = 2x−1. Certainly, the reader can verify that f and g are both bijective

functions (indeed, the graphs of f and g are lines of slope 2), hence the condition that the domain

of g contains the codomain of f and vice-versa hold. Likewise, it is simple to check that

(f ◦ g)(x) = f(g(x)) = f(2x− 1) = 2(2x− 1) + 1 = 4x− 1 and

(g ◦ f)(x) = g(f(x)) = g(2x+ 1) = 2(2x+ 1)− 1 = 4x+ 1.

Considering that (f ◦ g)(0) = −1 and (g ◦ f)(0) = 1 are not equal, f ◦ g and g ◦ f are not equal.

0.1.9 Inverse Functions

Considering that any function f : X → Y between two sets X and Y is by definition a relation,

there exists an inverse relation f−1 from Y to X defined by f−1 = {(y, x) | (x, y) ∈ f}. One natural

curiosity regarding the nature of the inverse relation f−1 of a function f is to ask whether the

inverse relation f−1 of a function f must be a function. Generally, the answer is no.

Proposition 0.1.99 (The Inverse Relation of a Function Is Not Necessarily a Function). Given

any function f : X → Y, the inverse relation f−1 : Y → X is not necessarily a function.
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Proof. Consider the relation f = {(−1, 1), (1, 1)} on the set X = {−1, 1}. We leave it to the reader

to verify that f is a function with inverse relation f−1 = {(1,−1), (1, 1)}. We note that f−1 is not

a function because f−1(1) is not well-defined since (1,−1) and (1, 1) both lie in f−1.

Consequently, it would appear that in order for the inverse relation f−1 of a function f : X → Y

to be a function, we require that every element f(x) ∈ range(f) corresponds uniquely to an element

x ∈ X. Put another way, we must have that f is injective. Conversely, by definition, if f−1 : Y → X

is a function, then for every element y ∈ Y, we require that f−1(x) is an element of X. Explicitly, it

must be the case that for every element y ∈ Y, there exists an element x ∈ X such that y = f(x).

Put another way, we must have that f is surjective. We are therefore lead to the following result.

Theorem 0.1.100 (Existence of an Inverse Function). Given any function f : X → Y, the inverse

relation f−1 is a function if and only if f is bijective. Even more, if f−1 is a function, it is bijective.

Proof. Observe that if f is a bijective function, then for every element y ∈ Y, there exists a unique

element x ∈ X such that y = f(x). Consequently, the inverse relation f−1 : Y → X of f defined by

(y, x) ∈ f−1 if and only if y = f(x) is a function because for every element y ∈ Y, there exists one

and only one element x ∈ X such that y = f(x) by hypothesis that f is a bijection. Concretely, for

any pair of elements (y, x1), (y, x2) ∈ f−1, we have that f(x1) = y = f(x2) so that x1 = x2 since f

is injective, and every element of Y is mapped onto an element of X by f−1 since f is surjective.

Conversely, suppose that the inverse relation f−1 = {(y, x) | (x, y) ∈ f} of f is a function.

By definition of a function, for every element y ∈ Y, there exists an element x ∈ X such that

(y, x) ∈ f−1 so that y = f(x). But this implies that f is surjective since every element of Y is the

image of some element of X. Even more, for every element y ∈ Y, there exists a unique element

x ∈ X such that (y, x) ∈ f−1 or y = f(x); thus, if (y, x1), (y, x2) ∈ f−1, then x1 = x2. By definition

of the inverse relation, we find that if f(x1) = f(x2), then x1 = x2, hence f is injective.

Last, we will demonstrate that if f−1 is a function, then f−1 is bijective. We will assume first

that f−1(y1) = f−1(y2). By the previous paragraph, if f−1 is a function, then f is surjective, hence

there exist elements x1, x2 ∈ X such that y1 = f(x1) and y2 = f(x2). By definition of the inverse

relation, if f−1(y1) = f−1(y2), then x1 = x2 so that y1 = f(x1) = f(x2) = y2. Even more, for every

element x ∈ X, there exists one and only one element y ∈ Y such that y = f(x) since f is bijective.

Consequently, for every element x ∈ X, there exists an element y ∈ Y such that x = f−1(y).

Remark 0.1.101 (Construction of Inverse Functions). By the previous theorem, the inverse relation

f−1 of a function f : X → Y is a function if and only if f is bijective. We demonstrate next that if f

is injective but not surjective, it is possible to construct an inverse function related to f. Crucially,

every function f : X → Y restricts to a surjective function F : X → f(X) defined by F (x) = f(x)

with the same domain as f but whose codomain is the range of f. Consequently, if f : X → Y is

injective, then F : X → f(X) is bijective, hence the inverse relation F−1 : f(X) → X is a function.

Conversely, even if f : X → Y is not injective, we may modify the domain of f to obtain a bijection.

Consider the set Xf of x ∈ X such that for every pair of elements x1, x2 ∈ Xf , we have that x1 = x2
if f(x1) = f(x2). One can verify that f̃ : Xf → f(Xf ) defined by f̃(x) = f(x) is bijective.

We illustrate these concepts in the following examples. Consider the real function f : R≥0 → R
defined by f(x) =

√
x. Observe that

√
x ≥ 0 for all real numbers x ≥ 0, hence f is not surjective:

indeed, we have that f(R≥0) = R≥0. Consequently, the induced function F : R≥0 → R≥0 defined
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by F (x) =
√
x is a bijection. Likewise, the real function g : R → R defined by g(x) = x2 is neither

injective nor surjective since g(−1) = 1 = g(1) and x2 ≥ 0 implies that g(R) = R≥0. On the other

hand, the induced function g̃ : R≥0 → R≥0 defined by g̃(x) = x2 is a bijection: indeed, for any real

numbers x21 = x22 such that x1, x2 ≥ 0, we must have that x1 = x2 since −x1,−x2 ≤ 0.

Once we have identified that a function f : X → Y admits an inverse function f−1 : Y → X, we

seek an explicit definition of that inverse function. We achieve this via the following proposition.

Proposition 0.1.102 (Construction and Uniqueness of Inverse Functions). Given any bijective

function f : X → Y, the inverse function f−1 : Y → X satisfies that f−1◦f = idX and f ◦f−1 = idY .

Conversely, if g : Y → X is any function such that g ◦ f = idX and f ◦ g = idY , then we must have

that g = f−1. Put another way, the inverse function f−1 : Y → X corresponding to any bijective

function f : X → Y is the unique function g : Y → X satisfying that g ◦ f = idX and f ◦ g = idY .

Proof. Given any bijective function f : X → Y, the inverse relation f−1 : Y → X is a function by

Theorem 0.1.100. By definition of f−1, we have that f−1(f(x)) = x = idX(x) for every element

x ∈ X so that f−1 ◦ f = idX by Proposition 0.1.72. Likewise, we have that f(f−1(y)) = y = idY (y)

for every element y ∈ Y so that f ◦f−1 = idY . We will assume next that g : Y → X is any function

such that g ◦ f = idX and f ◦ g = idY . By Proposition 0.1.96, we have that

g(y) = (g ◦ idY )(y) = [g ◦ (f ◦ f−1)](y) = [(g ◦ f) ◦ f−1](y) = (idX ◦f−1)(y) = f−1(y)

for every element y ∈ Y. We leave it to the reader to verify that if f ◦ g = idY , then g = f−1.

Remark 0.1.103. Generally, Proposition 0.1.102 provides an algorithm for determining the inverse

function f−1 : Y → X of any function f : X → Y that can be defined by an explicit rule y = f(x).

Explicitly, we may solve the equation y = f(x) in terms of x to find that x = f−1(y).

Example 0.1.104. We proved in Example 0.1.87 that the function f : Z → Z defined by f(x) = −x
is bijective; its inverse function f−1 : Z → Z is defined by f−1(x) = −x.

Example 0.1.105. We proved in Example 0.1.88 that the function f : R \ {3} → R \ {1} with

f(x) =
x− 2

x− 3

is bijective. Observe that its inverse function is f−1 : R \ {1} → R \ {3} defined by

f−1(x) =
3x− 2

x− 1
.

Concretely, this formula is obtained by solving the equation y = f(x) in terms of x = f−1(y) and

subsequently replacing each instance of the symbol y with the symbol x. We encourage the reader

to revisit the aforementioned example or proceed to the next example for the details.

Example 0.1.106. Consider the rational function f : R \ {2} → R \ {1} defined by

f(x) =
2x+ 3

2x− 4
.



0.1. SETS, RELATIONS, AND FUNCTIONS 33

We may solve the equation y = f(x) to find a function x = f−1(y) that is the inverse of f.

y = f(x) =
2x+ 3

2x− 4

2xy − 4y = 2x+ 3

2xy − 2x = 4y + 3

x(2y − 2) = 4y + 3

x =
4y + 3

2y − 2
= f−1(y)

Consequently, we obtain a rational function f−1 : R \ {1} → R \ {2} defined by

f−1(x) =
4x+ 3

2x− 2
.

We will verify that (f−1 ◦ f)(x) = x for all real numbers x ̸= 2 and (f ◦ f−1)(x) = x for all real

numbers x ̸= 1. By Proposition 0.1.107, we will conclude that f−1 is the inverse of f.

(f−1 ◦ f)(x) = f−1(f(x)) =
4f(x) + 3

2f(x)− 2
=

4 · 2x+3
2x−4

+ 3

2 · 2x+3
2x−4

− 2
=

4(2x+ 3) + 3(2x− 4)

2(2x+ 3)− 2(2x− 4)
=

14x

14
= x

(f ◦ f−1)(x) = f(f−1(x)) =
2f−1(x) + 3

2f−1(x)− 4
=

2 · 4x+3
2x−2

+ 3

2 · 4x+3
2x−2

− 4
=

2(4x+ 3) + 3(2x− 2)

2(4x+ 3)− 4(2x− 2)
=

14x

14
= x

Currently, our strategy for computing the inverse function of a bijective function is somewhat

backwards: in order to determine that the inverse relation of a function is a function, we must prove

that the function is a bijection. But this requires us to establish that the function is onto, and this

necessitates the computation of the inverse function. We make the process more efficient as follows.

Proposition 0.1.107. Given any function f : X → Y such that there exists a function g : Y → X

for which g ◦ f = idX and f ◦ g = idY , it follows that f and g are bijections satisfying that g = f−1.

Proof. We will prove only that f is bijective. By Propositions 0.1.100 and 0.1.102, the result follows.

Consider any elements x1, x2 ∈ X such that f(x1) = f(x2). By hypothesis, we have that

x1 = idX(x1) = (g ◦ f)(x1) = g(f(x1)) = g(f(x2)) = (g ◦ f)(x2) = idX(x2) = x2,

hence we conclude that f is injective. Conversely, for every element y ∈ Y, we have that

y = idY (y) = (f ◦ g)(y) = f(g(y)).

Considering that g(y) = x is an element of X, we conclude that y = f(x) so that f is surjective.
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0.2 Logic and Truth Tables

Generally, the purpose of mathematics is to describe the universe quantitatively in a manner that

is consistent, replicable, and unambiguous. Combined with the language of set theory, the calculus

of logic provides the basis for mathematical communication: if sets, relations, and functions con-

stitute the skeleton of some structure or organism that can be modelled mathematically, then the

connective tissue is represented by (mathematical) statements, logical quantifiers, and truth tables.

We introduce in this section several axioms and symbols that are commonplace in modern logic.

0.2.1 Statements

We have thus far garnered a working knowledge of set theory — including the theory of relations

and functions — and we have seen examples of mathematical proofs. We turn our attention next to

fleshing out some details regarding the calculus of logic that will soon assist us with writing original

proofs. We will assume throughout this section that the symbols P and Q are statements, i.e., P

and Q are complete sentences that assert a property that is unambiguously true (T ) or false (F ).

Example 0.2.1. “Every positive whole number is an integer” is an example of a true statement.

Example 0.2.2. “The integer 10 is divisible by 3” is an example of a false statement.

Example 0.2.3. “The weather in Kansas City is lovely this time of year” is not a statement because

some might think so, but others might not: its truth value is ambiguous. Generally, any sentence

that is exclamatory (e.g., any observation), imperative (e.g., any command), or interrogative (e.g.,

any question) is not a statement because these types of sentences have no inherent truth value.

Exclamatory: “What a story, Mark!”

Imperative: “Don’t forget to mow the lawn.”

Interrogative: “How about those Chiefs?”

We will henceforth refer to the verity of a statement as its truth value. Our ability to determine

the truth value of a sentence does not preclude the possibility that the sentence is a valid statement;

indeed, there are many unsolved statements throughout mathematics. Generally, a statement whose

truth value is undetermined is called a conjecture. Common examples of mathematical statements

with undetermined veracity include those that involve a potentially unknown or variable quantity

x. We have encountered statements of these kinds throughout many of our mathematics courses.

Example 0.2.4. “The real number x is irrational” is an example of a valid statement; it is neither

true nor false, but rather, its truth value depends explicitly on the value of the real number x.

Conventionally, any declarative statement of the form P (x) for some variable quantity x is called

an open sentence; the set of all possible values that x can assume is called the domain of x; and

the truth value of P (x) depends explicitly upon the determination of the variable x.

Example 0.2.5. Observe that the statement P (x) that “the real number x is irrational” is an open

sentence; the domain of x is the set of real numbers; and P (x) is true if and only if x ∈ R \Q.

We will typically represent an open sentence in the variable x by the symbol P (x), and we will

separate P (x) from the open sentence it represents with a colon, as in the following example.
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Example 0.2.6. Consider the following pair of open sentences.

P (x) : We have that x2 − 1 = 0.

Q(x) : We have that x2 + 1 = 0.

By solving for the unknown quantity x, we find that P (x) is a true statement if and only if x = ±1,

hence the natural domain for the statement P (x) is the set Z of integers. Likewise, it follows that

Q(x) is a true statement if and only if x = ±
√
−1, hence Q(x) is false for any subset of real numbers

because
√
−1 is not a real number. We conclude that the natural domain for Q(x) is C.

Example 0.2.7. Consider the following open sentence.

P (x, y) : We have that x2 + y2 ≥ 0

Considering that x2 + y2 ≥ 0+ 0 = 0 for any pair of real numbers x and y, it follows that P (x, y) is

a true statement if the domain of x and y is any subset of the set R of real numbers; however, if the

domains of x and y are both the set C of complex numbers, then we can determine values of x and

y such that P (x, y) is false. Concretely, we note that P (i, i) is false since i2+ i2 = −1−1 = −2 < 0.

Example 0.2.8. Consider the following open sentence.

P (x, y) : We have that x+ y is a positive prime number.

Let us assume throughout this example that the domain of x is X = {1, 2, 3, 4} and the domain of

y is Y = {−1,−2,−3,−4}. Calculating the sum x+ y for each of the sixteen elements of X ×Y, we

find that P (x, y) is true if and only if (x, y) ∈ {(3,−1), (4,−1), (4,−2)}; otherwise, P (x, y) is false.

Often, it is convenient to collect the truth values of some finitely many statements P1, P2, . . . , Pn

in a truth table. Each column of a truth table contains one statement followed by all of its possible

truth values relative to the other statements. Concretely, the first row of a truth table contains the

symbols that represent the statements, and the subsequent rows contain the possible truth values

of each statement relative to the other. Considering that any statement attains one and only truth

value, a truth table for the n statements P1, P2, . . . , Pn admits n columns and 2n+1 rows as follows.

P

T

F

P Q

T T

T F

F T

F F

P Q R

T T T

T T F

T F T

T F F

F T T

F T F

F F T

F F F

Table 1: the truth tables for one, two, and three statements
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0.2.2 Conjunction, Disjunction, and Negation

We examine next the myriad ways to construct new statements from any finite number of existing

statements. We concern ourselves immediately with a statement P. We refer to the statement “not

P” (precisely, “It is not the case that P”) as the negation of P ; symbolically, the negation of any

statement P is denoted by ¬P. Often, it is possible to represent the negation ¬P of a statement P

in a less clunky way than simply by, “It is not the case that P,” as the following examples illustrate.

Example 0.2.9. Consider the following statement.

P : The integer 2 is even.

By definition, the negation ¬P of the given statement P is the following statement.

¬P : It is not the case that the integer 2 is even.

Considering that any integer is either even or odd, we can rephrase ¬P as follows.

¬P : The integer 2 is odd.

Crucially, we note that P is a true statement, and its negation ¬P is a false statement.

Example 0.2.10. Consider the following statement.

P : The integer 111 is prime.

We may express the negation ¬P of the given statement P as follows.

¬P : The integer 111 is not prime.

Better yet, since every integer is either prime or composite, we can rephrase ¬P as follows.

¬P : The integer 111 is composite.

Observe that in this case, the statement P is false, and its negation ¬P is a true statement.

Generally, it ought to be clear to the reader that the statements P and ¬P have opposite truth

values: if P is true, then ¬P must be false; however, if P is false, then ¬P must be true.

P ¬P
T F

F T

Table 2: the truth table for the negation ¬P

Even more, we will soon see for any statement P, it must be the case that either P is true or ¬P
is true. Before we arrive at this conclusion, we must discuss other ways to create new statements

from a pair of statements P and Q. One way to do this is to consider the case that either P is true

or Q is true. Put into symbols, the disjunction P ∨Q of the statements P and Q is the statement,

“Either it is the case that P or it is the case that Q,” for which the upside-down wedge ∨ denotes

the connective “or.” Compare the similarities between the disjunction ∨ and the set union ∪.
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Example 0.2.11. Consider the following pair of statements.

P : Topeka is the capital of Kansas.

Q : The real number
√
2 is a root of x2 − 2.

We may construct the disjunction P ∨Q by placing the connective “or” between the statements.

P ∨Q : Either Topeka is the capital of Kansas or the real number
√
2 is a root of x2 − 2.

Both of the statements P and Q are in fact true, hence the disjunction P ∨Q is true.

Example 0.2.12. Consider the following pair of statements.

P : Kansas City is the capital of Missouri.

Q : The real number π is transcendental.

We may construct the disjunction P ∨Q by placing the connective “or” between the statements.

P ∨Q : Either Kansas City is the capital of Missouri or the real number π is transcendental.

Even though the statement P is false (since the capital of Missouri is Jefferson City), the disjunction

P ∨Q is true because π is a transcendental number (this fact is non-trivial but well-known).

Example 0.2.13. Consider the following pair of statements.

P : The square root of −1 is a real number

Q : The integer 11 is composite.

We may construct the disjunction P ∨Q by placing the connective “or” between the statements.

P ∨Q : Either the square root of −1 is a real number or the integer 11 is composite.

Both of these statements P and Q are false:
√
−1 is a non-real complex number, and 11 is prime.

Consequently, the disjunction P∨Q is a false statement because neither P nor Q is a true statement.

Crucially, we note that if either of the statements P or Q is true, then the disjunction P ∨ Q
must also be true; however, if neither of the statements P or Q is true, then P ∨Q must be false.

P Q P ∨Q
T T T

T F T

F T T

F F F

Table 3: the truth table for the disjunction P ∨Q

We may also consider the case that both of the statements P and Q are true simultaneously.

Put another way, we may form the statement, “It is the case that P and it is the case that Q.”

We refer to this statement as the conjunction P ∧Q of P and Q, and we use the wedge ∧ as the

connective “and.” Compare the similarities between the conjunction ∧ and the set intersection ∩.
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Example 0.2.14. Consider the following pair of statements.

P : Paris is the capital of France.

Q : The real number 1 is less than the real number
√
2.

We may construct the conjunction P ∧Q by placing the connective “and” between the statements.

P ∧Q : Paris is the capital of France, and the real number 1 is less than the real number
√
2.

Both of the statements P and Q are in fact true, hence the conjunction P ∧Q is true.

Example 0.2.15. Consider the following pair of statements.

P : Leticia is the capital of France.

Q : The identity function on a set is injective.

We may construct the conjunction P ∧Q by placing the connective “and” between the statements.

P ∧Q : Leticia is the capital of France, and the identity function on a set is injective.

Considering that the statement P is false (since we know that Paris is the capital of France), the

conjunction P ∧Q is false. Explicitly, it is not true that both P and Q are true, so P ∧Q is false.

Example 0.2.16. Consider the following pair of statements.

P : We have that cos(kπ) = 0 for all integers k.

Q : The integer 8 is a perfect square.

We may construct the conjunction P ∧Q by placing the connective “and” between the statements.

P ∧Q : We have that cos(kπ) = 0 for all integers k, and integer 8 is a perfect square.

Both of these statements are false: indeed, cos(kπ) = (−1)k for all integers k, and
√
8 = 2

√
2 is not

an integer. Consequently, the conjunction P ∧Q is false because neither P nor Q is true.

We note that the conjunction P ∧Q of statements P and Q is true if and only if both P and Q

are true. Consequently, if either of the statements P or Q is false, then P ∧ Q is false. Be careful

not to confuse the upside-down wedge ∨ (meaning “or”) with the wedge ∧ (meaning “and”).

P Q P ∧Q
T T T

T F F

F T F

F F F

Table 4: the truth table for conjunction P ∧Q
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We are now in a position to state and prove two fundamental principles in the calculus of logic.

Theorem 0.2.17 (Law of Excluded Middle). We have that P ∨ ¬P is true for any statement P.

Proof. Given any statement P, consider the disjunction P ∨ ¬P of P and ¬P. Observe that if P is

true, then P ∨ ¬P is true. Conversely, if P is false, then ¬P is true, hence P ∨ ¬P is true.

P ¬P P ∨ ¬P
T F T

F T T

Table 5: the Law of Excluded Middle

Theorem 0.2.18 (Law of Non-Contradiction). We have that P ∧¬P is false for any statement P.

Proof. Given any statement P, consider the conjunction P ∨¬P of P and ¬P. Observe that if P is

true, then ¬P is false, hence P ∧ ¬P is false. Conversely, if P is false, then P ∧ ¬P is false.

P ¬P P ∧ ¬P
T F F

F T F

Table 6: the Law of Non-Contradiction

0.2.3 Conditional and Biconditional Statements

Going forward, we will be interested primarily in statements of the form P ⇒ Q, read aloud as “P

implies Q” or “If P, then Q.” Unsurprisingly, a statement of this form is called an implication or

a conditional statement. We refer to the statement P in this construction as the antecedent;

the statement Q is called the consequent. Observe that the statement P ⇒ Q is false if and only

if Q is false and P is true (since this is a lie); otherwise, the implication P ⇒ Q is true.

Example 0.2.19. Consider the following pairs of statements.

P : Madrid is the capital of Spain.

Q : The integer 3 is odd.

We may construct the implication P ⇒ Q as follows.

P ⇒ Q : If Madrid is the capital of Spain, then the integer 3 is odd.

Considering that both P and Q are true statements, it follows that P ⇒ Q is true.

Example 0.2.20. Consider the following pairs of statements.

P : The integer 3 divides the integer 243.

Q : The integer 3 is even.

We may construct the implication P ⇒ Q as follows.

P ⇒ Q : If the integer 3 divides the integer 243, then the integer 3 is even.

Observe that 243 = 81 · 3, hence 3 divides 243; however, we know well that 3 is not an even integer.

Consequently, the conditional statement P ⇒ Q is false: indeed, we are lying here.
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Below is the truth table for the conditional statement P ⇒ Q, as indicated above.

P Q P ⇒ Q

T T T

T F F

F T T

F F T

Table 7: the truth table for the implication P ⇒ Q

Crucially, if the statement P is false, then according to Table 7 above, the implication P ⇒ Q

is true regardless of the truth value of Q; in this case, the conditional statement P ⇒ Q is called

a vacuous truth, or equivalently, we say that P ⇒ Q is vacuously true. Concretely, the idea is

that the antecedent P cannot be satisfied because it is false, so the implication must be true.

Example 0.2.21. Consider the following pairs of statements.

P : The integer 17 is negative.

Q : Dr. Beck is a multi-instrumentalist.

We may construct the implication P ⇒ Q as follows.

P ⇒ Q : If the integer 17 is negative, then Dr. Beck is a multi-instrumentalist.

Considering that the antecedent P is false (since its negation “¬P : The integer 17 is positive.” is

in fact the true statement), it follows that the conditional statement P ⇒ Q is vacuously true.

One way to justify this result (as promised by Table 7) is that no lies were told: Dr. Beck is a

multi-instrumentalist, so there was no harm in (falsely) assuming that 17 is a negative integer.

Example 0.2.22. Consider the following pairs of statements.

P : The integer 17 is negative.

Q : Dr. Beck is a multi-millionaire.

We may construct the implication P ⇒ Q as follows.

P ⇒ Q : If the integer 17 is negative, then Dr. Beck is a multi-millionaire.

Considering that the antecedent P is false (since its negation “¬P : The integer 17 is positive.”

is in fact the true statement), it follows that the conditional statement P ⇒ Q is vacuously true.

(Unfortunately for Dr. Beck, this makes no difference for his situation: the integer 17 is positive.)

One way to verify this result is that no lies were told: Dr. Beck is in fact not a multi-millionaire,

but on the other hand, there was nothing guaranteed unless 17 were in fact a negative integer.

We will typically say that “P implies Q” or “If P, then Q” if the conditional statement P ⇒ Q is

true. Conventionally, if P implies Q, then we will say that P is sufficient for Q. One can rephrase

this by saying that P is sufficient for Q if Q is true provided the statement P. Crucially, as Table 7

illustrates, the statement P may be either true or false; it does not actually matter. Equivalently,

we may say that “P only if Q” if the conditional statement P ⇒ Q is true. We declare in this case

that Q is necessary for P. Consequently, each of the following statements is equivalent.
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(a.) P ⇒ Q

(b.) If P, then Q.

(c.) Q if P.

(d.) P only if Q.

(e.) P is sufficient for Q.

(f.) Q is necessary for P.

We will fix our attention throughout the rest of the course primarily on conditional statements

in which P and Q are open sentences. Consider the following examples along these lines.

Example 0.2.23. Consider the following pairs of statements about a positive integer n.

P (n) : The integer n4 + 1 is prime.

Q(n) : The integer n2 + 1 is prime.

By plugging in different values of the integer n ≥ 1, we obtain explicit statements P (n) and Q(n).

P (1) : The integer 2 is prime. Q(1) : The integer 2 is prime.

P (2) : The integer 17 is prime. Q(2) : The integer 5 is prime.

P (3) : The integer 82 is prime. Q(3) : The integer 10 is prime.

P (4) : The integer 257 is prime. Q(4) : The integer 17 is prime.

P (5) : The integer 626 is prime. Q(5) : The integer 26 is prime.

Consider the conditional statement P (n) ⇒ Q(n) defined as follows.

P (n) ⇒ Q(n) : If the integer n4 + 1 is prime, then the integer n2 + 1 is prime.

By Table 7, we know that P (n) ⇒ Q(n) is false if and only if P (n) is true and Q(n) is false.

Consequently, the statement P (n) ⇒ Q(n) is true for all integers 1 ≤ n ≤ 5. Quite astonishingly,

this statement is in fact true for all integers 1 ≤ n ≤ 27; however, we have that 284 + 1 = 614657

is prime and 282 + 1 = 785 is not prime, hence the statement P (28) ⇒ Q(28) is false.

Example 0.2.24. Consider the following pairs of statements about a positive integer n.

P (n) : The integer n2 + 1 is prime.

Q(n) : The integer n4 − 1 is prime.

By definition, the conditional statement P (n) ⇒ Q(n) is given as follows.

P (n) ⇒ Q(n) : If the integer n2 + 1 is prime, then the integer n4 − 1 is prime.

By Table 7, we know that P (n) ⇒ Q(n) is false if and only if P (n) is true and Q(n) is false.

Considering that n4 − 1 = (n2 − 1)(n2 + 1) is divisible by n2 + 1 for all integers n, it follows that

n4 − 1 is composite for all integers n, hence the open sentence Q(n) is false for every integer n. We

conclude that the conditional statement P (n) ⇒ Q(n) is false for all integers n ≥ 1.

Example 0.2.25. Consider the following pairs of statements about a pair of real numbers x and y.

P (x, y) : We have that x+ y = 1.

Q(x, y) : We have that x2 + y2 = 1.
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By definition, the conditional statement P (x, y) ⇒ Q(x, y) is given as follows.

P (x, y) ⇒ Q(x, y) : If x+ y = 1, then x2 + y2 = 1.

By Table 7, we know that P (x, y) ⇒ Q(x, y) is false if and only if P (x, y) is true and Q(x, y) is

false. Observe that if x+ y = 1, then y = 1− x so that y2 = x2 − 2x+ 1. Consequently, it follows

that x2 + y2 = 2x2 − 2x+ 1; thus, the open sentence Q(x, y) is true if and only if 2x2 − 2x+ 1 = 1

if and only if 2x2 − 2x = 0 if and only if 2x(x− 1) = 0 if and only if x = 0 or x = 1. We conclude

that the statement P (x, y) ⇒ Q(x, y) is true if and only if x = 0 and y = 1 or x = 1 and y = 0.

Given any pair of statements P and Q, the conditional statement Q ⇒ P formed by swapping

the antecedent and the consequent is called the converse of the conditional statement P ⇒ Q.

Like the implication P ⇒ Q, its converse Q⇒ P can be understood in different ways.

(a.) Q⇒ P

(b.) If Q, then P.

(c.) P if Q.

(d.) Q only if P.

(e.) Q is sufficient for P.

(f.) P is necessary for Q.

P Q Q⇒ P

T T T

T F T

F T F

F F T

Table 8: the truth table for the converse Q⇒ P of the implication P ⇒ Q

Example 0.2.26. Consider the following pairs of statements.

P : The integer 17 is negative.

Q : Dr. Beck is a multi-instrumentalist.

We may construct the converse Q⇒ P of the implication P ⇒ Q as follows.

Q⇒ P : If Dr. Beck is a multi-instrumentalist, then the integer 17 is negative.

Unlike the implication P ⇒ Q (which is vacuously true since P is false), the converse Q ⇒ P is

false: Dr. Beck is a multi-instrumentalist, but the integer 17 is not negative.

Example 0.2.27. Consider the following pairs of statements.

P : The integer 17 is negative.

Q : Dr. Beck is a multi-millionaire.

We may construct the converse Q⇒ P of the implication P ⇒ Q as follows.

Q⇒ P : If Dr. Beck is a multi-millionaire, then the integer 17 is negative.

Considering that the antecedent Q is false, the conditional statement Q ⇒ P is vacuously true.

One way to verify this result is that no lies were told: Dr. Beck is not a multi-millionaire.
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Bearing in mind Examples 0.2.21 and 0.2.26, even if P is sufficient for Q, it may not be true

that P is necessary for Q; however, if P is both necessary and sufficient for Q, then both of the

conditional statements P ⇒ Q and Q⇒ P are true. We say in this case that P holds if and only if

Q holds, and we represent this relationship symbolically by P ⇔ Q. We will typically say that the

statements P and Q are (materially) equivalent if P is true if and only if Q is true. Put another

way, the material equivalence P ⇔ Q is simply the conjunction (P ⇒ Q) ∧ (Q ⇒ P ). Each of the

following statements concerning the biconditional statement P ⇔ Q is equivalent.

(a.) P ⇔ Q

(b.) P if and only if Q.

(c.) P is (materially) equivalent to Q.

(d.) P is necessary and sufficient for Q.

P Q P ⇒ Q Q⇒ P (P ⇒ Q) ∧ (Q⇒ P ) P ⇔ Q

T T T T T T

T F F T F F

F T T F F F

F F T T T T

Table 9: the truth table for the biconditional P ⇔ Q

Put another way, we have that P ⇔ Q is true if and only if P and Q have the same truth value.

Example 0.2.28. Consider the following statements.

P : The integer 3 divides the integer 243.

Q : The integer 3 is even.

R : The integer 17 is negative.

S : The integer 2027 is prime.

Considering that P and S are true statements, but Q and R are false statements, it follows that

P ⇔ S and Q⇔ R are both true statements and P ⇔ Q, P ⇔ R, Q⇔ S, and R ⇔ S are all false

statements. Examples of these statements in words are provided below.

P ⇔ Q : The integer 3 divides the integer 243 if and only if 3 is even.

P ⇔ S : The integer 3 divides the integer 243 if and only if the integer 2027 is prime.

Q⇔ R : The integer 3 is even if and only if the integer 17 is negative.

Example 0.2.29. Consider the following statements about an integer n.

P (n) : The integer n is even.

Q(n) : The integer n2 is even.

We construct the biconditional statement P (n) ⇔ Q(n) as follows.

P (n) ⇔ Q(n) : The integer n is even if and only if the integer n2 is even.
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By definition, an integer n is even if and only if n = 2k for some integer k. Consequently, if n is

even, then n2 = (2k)2 = 4k2 = 2(2k2) is even. Conversely, if n2 is even, then there exists an integer

k such that n2 = 2k. Considering that 2 is prime, we must have that 2 divides n, hence n is even.

We conclude therefore that the statement P (n) ⇔ Q(n) is true for all integers n.

Example 0.2.30. Consider the following statements about an integer n.

P (n) : The integer n is odd.

Q(n) : The integer n2 is odd.

We construct the biconditional statement P (n) ⇔ Q(n) as follows.

P (n) ⇔ Q(n) : For the integer n to be odd, it is necessary and sufficient that n2 is odd.

Often, this construction is more awkward than the more natural “if and only if” statement.

P (n) ⇔ Q(n) : The integer n is odd if and only if the integer n2 is odd.

We leave it as an exercise for the reader to prove that P (n) ⇔ Q(n) is true for all integers n.

Example 0.2.31. Consider the following pairs of statements about a pair of real numbers x and y.

P (x, y) : We have that x2 + y2 = 1.

Q(x, y) : We have that (x, y) lies on a circle of radius 1 centered at (0, 0).

By definition, the statements P (x, y) ⇒ Q(x, y) and Q(x, y) ⇒ P (x, y) are as follows.

P (x, y) ⇒ Q(x, y) : If x2 + y2 = 1, then (x, y) lies on a circle of radius 1 centered at (0, 0).

Q(x, y) ⇒ P (x, y) : If (x, y) lies on a circle of radius 1 centered at (0, 0), then x2 + y2 = 1.

Recall that the equation of a circle of radius r centered at (h, k) is given by

(x− h)2 + (y − k)2 = r2.

Consequently, the conditional statement Q(x, y) ⇒ P (x, y) is true by definition. Conversely, if

x2 + y2 = 1, then (x − 0)2 + (y − 0)2 = 12 implies that the point (x, y) ∈ R × R lies on a circle of

radius 1 centered at (0, 0). Put another way, we have that P (x, y) ⇒ Q(x, y) is true. Ultimately,

these observations together yield that the biconditional statement P (x, y) ⇔ Q(x, y) is true.

0.2.4 Tautologies and Contradictions

By the Law of Excluded Middle, for any statement P, the statement P ∨¬P (“P or not P”) is true;

it is a tautology. Generally, a tautology is any statement that is true for all possible truth inputs.

Example 0.2.32. Given any statements P and Q, the disjunction (¬Q)∨ (P ⇒ Q) is a tautology.

We can convince ourselves of this by realizing that P ⇒ Q is true if either P is false or P and Q

are both true. Consequently, the statement (¬Q) ∨ (P ⇒ Q) is true in the case that P is false or

P and Q are both true. But if Q is false, then ¬Q is true, hence (¬Q) ∨ (P ⇒ Q) is true.
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P Q ¬Q P ⇒ Q (¬Q) ∨ (P ⇒ Q)

T T F T T

T F T F T

F T F T T

F F T T T

Table 10: the truth table for (¬Q) ∨ (P ⇒ Q)

Example 0.2.33. Given statements P and Q, the implication [(P ∨Q)∧(¬Q)] ⇒ P is a tautology:

indeed, it suffices to check that all of its values in the following truth table are T.

P Q ¬Q P ∨Q (P ∨Q) ∧ (¬Q)] [(P ∨Q) ∧ (¬Q)] ⇒ P

T T F T F T

T F T T T T

F T F T F T

F F T F F T

Table 11: the truth table for [(P ∨Q) ∧ (¬Q)] ⇒ P

Beyoncé says, “I break the internet: top two and I ain’t number two,” so she must be number one.

By the Law of Non-Contradiction, the statement P ∧¬P (“P and not P”) is always false; it is a

contradiction. Generally, a contradiction is a statement that is false for all possible truth inputs.

Example 0.2.34. Given statements P andQ, the conjunction P∧[P ⇒ (Q∧¬Q)] is a contradiction:
by the Law of Non-Contradiction, Q ∧ ¬Q is false; thus, the conditional statement P ⇒ (Q ∧ ¬Q)
is false if P is true. Conversely, the implication P ⇒ (Q ∧ ¬Q) is true if P is false. Consequently,

the statements P and P ⇒ (Q ∧ ¬Q) take opposite truth values, so their conjunction is false.

P Q ¬Q Q ∧ ¬Q P ⇒ (Q ∧ ¬Q) P ∧ [P ⇒ (Q ∧ ¬Q)]
T T F F F F

T F T F F F

F T F F T F

F F T F T F

Table 12: the truth table for P ∧ [P ⇒ (Q ∧ ¬Q)]

Example 0.2.35. Given any statements P and Q, the conjunction (P ∧ Q) ∧ [Q ⇒ ¬P ] is a

contradiction. We can verify this by constructing the corresponding truth table as follows.

P Q ¬P P ∧Q Q⇒ ¬P (P ∧Q) ∧ (Q⇒ ¬P )
T T F T F F

T F F F T F

F T T F T F

F F T F T F

Table 13: the truth table for (P ∧Q) ∧ (Q⇒ ¬P )
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0.2.5 Logical Equivalence

Given any statements P and Q, recall from Table 7 that the conditional statement P ⇒ Q is

vacuously true if P is false; therefore, in order to determine the truth value of P ⇒ Q, it suffices

to consider the case that P is true. Unfortunately, in some situations, it is difficult to establish the

verity of Q even if P is known to be true. Under these circumstances, it is not possible to determine

if the statement P ⇒ Q is true or false because this depends entirely on whether Q is true or false;

however, it is possible in some cases to extract a statement S(P,Q) that depends on both P and

Q that is logically equivalent to the implication P ⇒ Q. We say that two statements S1 and S2

are logically equivalent if and only if their values in a truth table are equal; if this is the case, then

we write S1 ≡ S2 to assert symbolically that S1 and S2 are logically equivalent. Consequently, if we

demonstrate that the statement S(P,Q) is true, then P ⇒ Q must be true, as well.

We will concern ourselves primarily with the interplay between the conjunction, disjunction,

implication, and negation. We seek to construct a glossary of statements that are logically equivalent

to the implication P ⇒ Q. Conventionally, if the statement P is false, then the implication P ⇒ Q

is vacuously true. Even more, if the statement Q is true, then the implication P ⇒ Q is trivially

true regardless of the truth value of P. Consequently, we may deduce that the statements P ⇒ Q

and ¬P ∨Q are logically equivalent, as the following truth table illustrates.

P Q ¬P P ⇒ Q ¬P ∨Q
T T F T T

T F F F F

F T T T T

F F T T T

Table 14: the truth table for the implication P ⇒ Q and the disjunction ¬P ∨Q

Proposition 0.2.36. Given any statements P and Q, we have that (P ⇒ Q) ≡ (¬P ∨Q).

Consider the statement ¬Q⇒ ¬P called the contrapositive of the implication P ⇒ Q.Observe

that if Q is true, then ¬Q is false, hence the statement ¬Q⇒ ¬P is vacuously true. Likewise, if Q

is true, then the statement P ⇒ Q is true regardless of the verity of P. Conversely, if Q is false, then

¬Q is true, hence ¬Q⇒ ¬P is true if and only if ¬P is true if and only if P is false. Consequently,

we are lead to the following truth table and the subsequent proposition.

P Q ¬P ¬Q P ⇒ Q ¬Q⇒ ¬P
T T F F T T

T F F T F F

F T T F T T

F F T T T T

Table 15: the truth table for the contrapositive ¬Q⇒ ¬P of the implication P ⇒ Q

Proposition 0.2.37. Given any statements P and Q, we have that (P ⇒ Q) ≡ (¬Q⇒ ¬P ).
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Example 0.2.38. Consider the following statements.

P : Bernard earns an A on his final exam in MA291.

Q : Bernard earns an A as his final grade in MA291.

Let us assume that if Bernard earns an A on his final exam in MA291, then Bernard earns an A as

his final grade in MA291. Consider the following statements regarding Bernard’s grade in MA291.

R : Either Bernard does not earn an A on his final exam or Bernard earns an A in MA291.

S : If Bernard does not earn an A in MA291, then Bernard did not earn an A on his final exam.

Observe that the statement R is true: indeed, if Bernard does not earn an A on his final exam,

then there is no promise as to what his final grade in MA291 will be, so no lies have been told

regardless of the outcome. On the other hand, if Bernard earns an A as his final grade, then it does

not matter what he earned on his final exam in MA291 because he will surely be happy with his

grade. Likewise, the statement S is true: indeed, if Bernard does not earn an A as his final grade,

then he must not have earned an A on his final exam because that would have guaranteed him an

A in the course. We have corroborated the logical equivalence of the statements P ⇒ Q, ¬P ∨Q,
and ¬Q⇒ ¬P for the example at hand, as guaranteed by Propositions 0.2.36 and 0.2.37.

Example 0.2.39. Consider the following statements.

P : It is overcast in Kansas City.

Q : Bernard brings an umbrella to work.

Let us assume as before that if it is overcast in Kansas City, then Bernard brings an umbrella to

work. Observe that if Bernard does not bring an umbrella to work, then it must not be overcast

in Kansas City; otherwise, if it were overcast in Kansas City, then Bernard would have brought an

umbrella to work. Even more, it is either sunny in Kansas City or Bernard brings an umbrella to

work: indeed, if Bernard does not bring an umbrella to work, then it must be sunny in Kansas City.

Our exposition here bears out the logical equivalence of P ⇒ Q, ¬Q⇒ ¬P, and ¬P ∨Q.

Often, it is useful to determine when the conditional statement P ⇒ Q is false (i.e., P does not

provide sufficient information from which to deduce Q). By Table 7, we have that P ⇒ Q is false if

and only if P is true and Q is false if and only if P ∧ ¬Q is true, hence the statements ¬(P ⇒ Q)

and P ∧ ¬Q are logically equivalent, as the following truth table illustrates.

P Q ¬Q P ⇒ Q ¬(P ⇒ Q) P ∧ ¬Q
T T F T F F

T F T F T T

F T F T F F

F F T T F F

Table 16: the truth table for the negated implication ¬(P ⇒ Q) and the disjunction P ∧ ¬Q

Proposition 0.2.40. Given any statements P and Q, we have that ¬(P ⇒ Q) ≡ (P ∧ ¬Q).
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Example 0.2.41. Consider the following statements.

P : Bernard earns an A on his final exam in MA291.

Q : Bernard earns an A as his final grade in MA291.

Observe that if Bernard earns an A on his final exam in MA291 but Bernard does not earn an A as

his final grade, then it is a lie to say that if Bernard earns an A on his final exam in MA291, then

Bernard earns an A as his final grade in MA291; this illustrates the result of Proposition 0.2.40.

By Table 3, if P ∨ Q is false, then neither P nor Q is true. Likewise, by Table 4, if P ∧ Q is

false, then either P is false or Q is false. Combined, these observations form De Morgan’s Laws.

P Q ¬P ¬Q P ∨Q ¬(P ∨Q) ¬P ∧ ¬Q P ∧Q ¬(P ∧Q) ¬P ∨ ¬Q
T T F F T F F T F F

T F F T T F F F T T

F T T F T F F F T T

F F T T F T T F T T

Table 17: the truth table for ¬(P ∨Q) and ¬(P ∧Q)

Theorem 0.2.42 (De Morgan’s Laws). Consider any statements P and Q.

(a.) We have that ¬(P ∨Q) ≡ ¬P ∧ ¬Q, i.e., ¬(P ∨Q) is logically equivalent to ¬P ∧ ¬Q.

(b.) We have that ¬(P ∧Q) ≡ ¬P ∨ ¬Q, i.e., ¬(P ∧Q) is logically equivalent to ¬P ∨ ¬Q.

Example 0.2.43. Consider the following statements.

P : It is overcast in Kansas City.

Q : Bernard brings an umbrella to work.

Observe that if it is not the case that either it is overcast in Kansas City or Bernard brings an

umbrella to work, then it must be the case that neither it is overcast in Kansas City nor Bernard

brings an umbrella to work. Likewise, if it is not the case that it is overcast in Kansas City and

Bernard brings an umbrella to work, then either it is not overcast in Kansas City or Bernard does

not bring an umbrella to work. We have thus verified De Morgan’s Laws for the given statements.

0.2.6 Quantified Statements

Often, we seek to determine the verity of an open sentence for all possible values in its domain.

Explicitly, if P (x) is any open sentence that depends on a variable x with domain S, then for each

element s ∈ S, the truth value of the statement P (s) is well-defined and can be determined.

Example 0.2.44. Consider the following statement about an integer n.

P (n) : The integer n is even.
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We can plainly see that the verity of P (n) depends entirely on the value of n. Each of the following

statements in the left-hand column is true, but each statement in the right-hand column is false.

P (0) : The integer 0 is even. P (1) : The integer 1 is even.

P (2) : The integer 2 is even. P (3) : The integer 3 is even.

P (4) : The integer 4 is even. P (5) : The integer 5 is even.

Quantification is another process of converting an open sentence P (x) in the variable x into

a statement whose truth value can be determined. Quantified statements are expressed using

logical quantifiers. Primarily, we will study three logical quantifies throughout this course.

We use the universal quantifier ∀ to symbolically represent the phrases “for all,” “for every,”

or “for each.” Consequently, the statement ∀x ∈ S, P (x) can be understood in words as, “For all

elements x ∈ S, we have that P (x).” Observe that the quantified statement ∀x ∈ S, P (x) is true

if P (x) is true for all elements x ∈ S; otherwise, this statement is false. Put another way, if the

statement P (x0) is false for some element x0 ∈ S, then the statement ∀x ∈ S, P (x) is false.

Summary 0.2.45. Given any open sentence P (x) with domain S, the quantified statement

∀x ∈ S, P (x) : For every element x ∈ S, we have that P (x).

is true if and only if P (x) is true for all elements x ∈ S. Conversely, this quantified statement is

false if and only if there exists an element x0 ∈ S such that P (x0) is false.

Example 0.2.46. Consider the following statement about an integer n.

P (n) : The integer n is even.

By using the universal quantifier ∀ (“for all”), we obtain the following quantified statement.

∀n ∈ Z, P (n) : For every integer n, we have that n is even.

By Example 0.2.44 and Summary 0.2.45, the above quantified statement is false since P (1) is false.

Example 0.2.47. Consider the following statements about an integer n.

P (n) : The integer n is even.

Q(n) : The integer n2 is even.

By using the universal quantifier ∀ (“for all”), we obtain the following quantified statement.

∀n ∈ Z, [P (n) ⇔ Q(n)] : For every integer n, we have that n is even if and only if n2 is even.

By Example 0.2.29, this statement is true because P (n) ⇔ Q(n) is true for all integers n.

Example 0.2.48. Consider the following statement about a pair of real numbers x and y.

P (x, y) : The real number x2 + y2 is non-negative.

By using the universal quantifier ∀ (“for all”), we obtain the following quantified statement.

∀x, y ∈ R, P (x, y) : For every pair of real numbers x and y, we have that x2 + y2 ≥ 0.

Considering that x2 ≥ 0 for every real number x, it follows that x2 + y2 ≥ 0 for every pair of real

numbers x and y. Consequently, the quantified statement ∀x, y ∈ R, P (x, y) is true.
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Example 0.2.49. Consider the following statements about a real number x.

P (x) : The real number x2 + 4 satisfies that x2 + 4 ≥ 4.

Q(x) : The real number x2 + 4 satisfies that x2 + 4 ≤ 4.

By using the universal quantifier ∀ (“for all”), we obtain the following quantified statements.

∀x ∈ R, P (x) : For all real numbers x, we have that x2 + 4 ≥ 4.

∀x ∈ R, Q(x) : For all real numbers x, we have that x2 + 4 ≤ 4.

Considering that x2 ≥ 0 for every real number x, it follows that x2 + 4 ≥ 4 for every real number

x. Consequently, the quantified statement ∀x ∈ R, P (x) is true; however, Q(1) is false because the

real number 5 = 12 + 4 does not satisfy that 5 ≤ 4. We conclude that ∀x ∈ R, Q(x) is false.

One other indispensable way to view the universally quantified statement ∀x ∈ S, P (x) in words

is, “If x is an element of S, then we have that P (x)” or “If x ∈ S, then P (x).” Observe that in

this manner, any statement involving the universal quantifier is simply a conditional statement.

Consequently, Proposition 0.2.36 entails the logical equivalence of the universally quantified state-

ment ∀x ∈ S, P (x) and the disjunction (x /∈ S) ∨ P (x). By De Morgan’s Laws, the negation of

∀x ∈ S, P (x) is logically equivalent to the negation of (x /∈ S) ∨ P (x) — namely, (x ∈ S) ∧ ¬P (x).

Summary 0.2.50. Given any open sentence P (x) with domain S, the following are equivalent.

(a.) ∀x ∈ S, P (x) : For every element x ∈ S, we have that P (x).

(b.) (x /∈ S) ∨ P (x) : Either x is not an element of S or we have that P (x).

Better yet, the negation of a quantified statement is itself a quantified statement. Explicitly, we

use the existential quantifier ∃ to express the phrases “there exists,” “for at least one,” or “for

some.” Consequently, the quantified statement ∃x ∈ S, P (x) can be understood in words as, “There

exists an element x ∈ S such that P (x).” Observe that the quantified statement ∃x ∈ S, P (x) is

true if P (x0) is true for some element x0 ∈ S; otherwise, this statement is false. Put another way,

if P (x) is false for every element x ∈ S, then the quantified statement ∃x ∈ S, P (x) is false.

Summary 0.2.51. Given any open sentence P (x) with domain S, the quantified statement

∃x ∈ S, P (x) : There exists an element x ∈ S such that P (x).

is true if and only if P (x0) is true for some element x0 ∈ S. Conversely, this quantified statement is

false if and only if the statement P (x) is false for all elements x ∈ S.

Example 0.2.52. Consider the following statement about an integer n.

P (n) : The integer n is even.

By using the existential quantifier ∃ (“there exists”), we obtain the following quantified statement.

∃n ∈ Z, P (n) : There exists an integer n such that n is even.

Certainly, the above quantified statement is true because P (2) is true.
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Example 0.2.53. Consider the following statement about an integer n.

P (n) : The integer n4 + 1 is prime.

By using the existential quantifier ∃ (“there exists”), we obtain the following quantified statement.

∃n ∈ Z, P (n) : There exists an integer n such that n4 + 1 is prime.

Considering that 2 = 14 + 1 is prime, P (1) is true, hence the above quantified statement is true.

Example 0.2.54. Consider the following statement about a pair of real numbers x and y.

P (x, y) : The real numbers x and y satisfy that x2 + y2 = 4.

By using the existential quantifier ∃ (“there exists”), we obtain the following quantified statement.

∃x, y ∈ R, P (x, y) : There exist real numbers x and y such that x2 + y2 = 4.

Considering that the set of ordered pairs (x, y) of real numbers satisfying that x2 + y2 = 4 is the

graph of a circle of radius 2 centered at the origin in the Cartesian plane, it follows that the above

quantified statement is true: indeed, both of the statements P (2, 0) and P (0, 2) are true.

Example 0.2.55. Consider the following statements about a real number x.

P (x) : The real number x satisfies that x2 − 2x− 3 = 0.

Q(x) : The real number x3 satisfies that x3 ≥ 8.

By using the existential quantifier ∃ (“there exists”), we obtain the following quantified statements.

∃x ∈ R, [P (x) ⇒ Q(x)] : There exists a real number x such that x3 ≥ 8 if x2 − 2x− 3 = 0.

∃x ∈ R, [P (x) ∧ ¬Q(x)] : There exists a real number x such that x2 − 2x− 3 = 0 and x3 < 8.

Observe that if P (x) is false, then the conditional statement P (x) ⇒ Q(x) is vacuously true.

Consequently, the first quantified statement above is true for any real number x such that x2−2x−3

is nonzero (e.g., suppose that x = 0 or x = 1). On the other hand, we can determine explicitly the

values of x such that P (x) is true since (x−3)(x+1) = x2−2x−3 = 0 if and only if x = 3 or x = −1.

Consequently, we have that P (3) ⇒ Q(3) is true. Likewise, the second quantified statement above

is true because the real number x = −1 satisfies that (−1)2 − 2(−1) − 3 = 0 and (−1)3 = 1 < 8.

Put another way, we have that P (−1) is true and Q(−1) is false.

We provide next the crucial theorem that relates the universal and existential quantifiers.

Theorem 0.2.56 (Negation of Quantified Statements). Consider any open sentence P (x) over S.

1.) We have that ¬[∀x ∈ S, P (x)] ≡ [∃x ∈ S, ¬P (x)].

2.) We have that ¬[∃x ∈ S, P (x)] ≡ [∀x ∈ S, ¬P (x)].

Last, if P (x) is any open sentence whose domain is any nonempty set S, then we say that an

element x0 ∈ S is the unique element of S satisfying the statement P (x0) if and only if
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(a.) the statement P (x0) is true and

(b.) for every element x ∈ S, if P (x) is true, then we must have that x = x0.

We use the uniqueness quantifier ! to represent the phrase “unique.” Explicitly, we will write

∃!x ∈ S, P (x) to signify that “there exists a unique element x ∈ S such that P (x).”

Example 0.2.57. Consider the following statement about an integer n.

P (n) : The integer n satisfies that 3n− 4 = 5.

Observe that P (n) is true if and only if 3n− 4 = 5 if and only if n = 3, hence the statement P (n)

admits a unique element n0 ∈ Z satisfying that P (n0) is true: namely, it is the integer n0 = 3. Put

another way, the following quantified statement involving the uniqueness quantifier is true.

∃!n ∈ Z, P (n) : There exists a unique integer n such that 3n− 4 = 9.

Example 0.2.58. Consider the following statement about a real number x.

P (x) : The real number x satisfies that x− 5 +
25

x+ 5
=

4x+ 5

x+ 5
.

By solving the rational equation that defines P (x), we find that P (x) is true if and only if x = 1.

(x− 5)(x+ 5) + 25

x+ 5
=

4x+ 5

x+ 5

(x− 5)(x+ 5) + 25 = 4x+ 5

x2 − 25 + 25 = 4x+ 5

x2 − 4x− 5 = 0

(x− 1)(x+ 5) = 0

Considering that x + 5 cannot equal 0, the Zero Product Property yields that x − 1 = 0 so that

x = 1. Put another way, the following statement involving the uniqueness quantifier is true.

∃!x ∈ R, P (x) : There exists a unique real number x such that x− 5 +
25

x+ 5
=

4x+ 5

x+ 5
.

0.3 Basic Proof Techniques

Generally, mathematical research and problem solving are carried out in two steps: first, one must

conduct extensive experimentation to determine some underlying pattern; then, the most significant

effort is exerted to establish the veracity of the observed phenomenon in general. Concretely, this is

achieved using set theory and the calculus of logic to construct a mathematical proof. Put simply, a

mathematical proof is nothing more than a convincing argument that is replicable and unambiguous.

We demonstrate in this section how to employ the basic axioms and general principles of certain

mathematical structures to write mathematical proofs. We devote our attention to the three most

common types of proofs: direct proof, proof by contrapositive, and proof by contradiction.
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0.3.1 Direct Proof

Our primary focus throughout this section is to use the foundations of the calculus of logic presented

in Section 0.2 to inform and develop the writing of mathematical proofs: indeed, the overwhelming

impetus of contemporary mathematics lies in proving statements of the form “if P, then Q” for some

statements (or open sentences) P and Q. Consequently, our attention will be by-and-large fixed on

conditional statements of the form P ⇒ Q. Considering the truth table 7 for the implication, if

either the statement Q is true or the statement P is false, then the conditional statement P ⇒ Q is

true. Proofs that are carried out by showing that Q is true are called trivial proofs. Conversely,

any proof that demonstrates that P is false is called a vacuous proof. We begin our discussion of

direct proofs with this low-hanging fruit, as illustrated in the following typical examples.

Example 0.3.1. Prove that if n is an even integer, then n2 + 4 ≥ 3.

Solution. Consider the following statements involving an integer n.

P (n) : The integer n is even.

Q(n) : The integer n satisfies that n2 + 4 ≥ 3.

We seek to prove that ∀n ∈ Z, [P (n) ⇒ Q(n)] is a true statement. Considering that n2 ≥ 0 for

any real number (and hence any integer) n, it follows that n2 +4 ≥ 4. Consequently, the statement

Q(n) is true for all integers n, hence the statement ∀n ∈ Z, [P (n) ⇒ Q(n)] is trivially true. ⋄

Our above work is merely a suggestion of a proof of the statement in Example 0.3.1. Below, we

provide an example of how a proof of this statement might look “in the wild.” Crucially, observe

that in the following proof, there is no need to provide any symbols for the statements.

Proof. (Example 0.3.1) Considering that n2 ≥ 0 for any real number n, it follows that n2 + 4 ≥ 4.

Consequently, we have that n2 + 4 ≥ 3 for every integer n, so the claim holds trivially.

We point out at this juncture two important features of a mathematical proof. First, it is vitally

important for the writer to indicate the beginning of a proof with an italicized “Proof” and a period.

Equally as important is the ending of the proof. We will use in this course an empty box to signal

the conclusion of a proof; however, the reader may alternatively use the acronym “QED” (Latin for

“quod erat demonstrandum” or “what was to be shown”) depending upon their preference.

Example 0.3.2. Prove that if a real number x satisfies that x2 − 2 = 0, then 7 is an odd integer.

Solution. Like the previous example, the hypothesis that x is a real number satisfying that x2−2 = 0

has no bearing on the truth value of the conclusion that 7 is an odd integer: indeed, 7 is an odd

integer, so regardless of what hypotheses we make, the if-then statement remains true. ⋄

Proof. (Example 0.3.2) Considering that 7 is an odd integer, the statement is trivially true.

Example 0.3.3. Prove that if the Riemann Hypothesis holds, then d
dx
ex = ex.

Proof. By elementary calculus, it holds that d
dx
ex = ex, hence the statement is trivially true.

Example 0.3.4. Prove that if −1 is an even integer, then the Riemann Hypothesis holds.

https://en.wikipedia.org/wiki/Riemann_hypothesis
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Solution. We are now in the opposite case of a trivial proof: indeed, the hypotheses of the statement

are false because −1 is not an even integer, hence the statement is true vacuously. ⋄

Proof. (Example 0.3.4) Considering that −1 is an odd integer, the statement is vacuously true.

Example 0.3.5. Prove that if there exist a pair of real numbers x and y such that x2 + y2 = −4,

then only finitely many positive integers are prime.

Proof. Given any real number x, we have that x2 ≥ 0. Consequently, we find that x2 + y2 ≥ 0 for

all real numbers x and y. Bearing this in mind, it follows that the statement is vacuously true.

Example 0.3.6. Prove that if {(x, y) | x, y ∈ R and y2 = x} is a function, then 1
0
= 1.

Proof. Observe that if x = 1, then the real numbers y = 1 and y = −1 both satisfy that y2 = x.

Consequently, the ordered pairs (1, 1) and (1,−1) both belong to {(x, y) | x, y ∈ R and y2 = x},
hence this relation is not a function. We conclude that the statement is vacuously true.

Often, it will not be the case that we will encounter a statement that can be proved by a trivial

or vacuous proof; rather, we will typically assume that the hypotheses of the statement are true in

the first place, and we will subsequently perform some algebraic analysis or arithmetic manipulation

in order to rigorously justify that the conclusion of the statement holds. We refer to this process

as a direct proof. Explicitly, a direct proof of a conditional statement P ⇒ Q usually begins

with the phrase, “Suppose that P is true” and ends with the phrase, “We conclude that Q is true.”

Between these two points, the writer is left to fill in the details — how ever complicated they are.

Crucially, the validity of a direct proof relies on the law of inference called modus ponens that

asserts that the conditional statement [(P ⇒ Q) ∧ P ] ⇒ Q is a tautology. Eliminating the trivial

or vacuous cases, in order to establish the verity of a conditional statement P ⇒ Q, we need only

assume that P is true and deduce from this that P ⇒ Q is true (because if P is false, then P ⇒ Q

is true vacuously). Let us construct a truth table to verify the law of modus ponens.

P Q P ⇒ Q (P ⇒ Q) ∧ P [(P ⇒ Q) ∧ P ] ⇒ Q

T T T T T

T F F F T

F T T F T

F F T F T

Table 18: the truth table for modus ponens [(P ⇒ Q) ∧ P ] ⇒ Q

We conclude this section with several examples of direct proofs that require a bit more work

than trivial or vacuous proofs. Before this, we recall the definitions of an even integer versus an odd

integer. Explicitly, an integer n is even if and only if there exists an integer k such that n = 2k.

Conversely, an integer n is odd if and only if there exists an integer ℓ such that n = 2ℓ+ 1.

Example 0.3.7. Prove that if n is an even integer, then 4n+ 7 is an odd integer.

Proof. By definition, if n is an even integer, then there exists an integer k satisfying that n = 2k.

Consequently, we have that 4n+7 = 4(2k)+7 = 8k+7 = (8k+6)+1 = 2(4k+3)+1. Considering

that 4k + 3 is also an integer, it follows that 4n+ 7 is an odd integer, as desired.
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Example 0.3.8. Prove that if n is an odd integer, then 3n− 1 is an even integer.

Proof. By definition, if n is an odd integer, then there exists an integer k satisfying that n = 2k+1.

Consequently, we have that 3n− 1 = 3(2k + 1)− 1 = 6k + 2 = 2(3k + 1). Considering that 3k + 1

is also an integer, it follows that 3n− 1 is an even integer, as desired.

Example 0.3.9. Prove that if n is an even integer, then 3n2 + 5n− 3 is an odd integer.

Proof. By definition, if n is an even integer, then n = 2k for some integer k. Consequently, we have

3n2 + 5n− 3 = 3(2k)2 + 5(2k)− 3 = 12k2 + 10k − 3 = (12k2 + 10k − 4) + 1 = 2(6k2 + 5k − 2) + 1.

Considering that 6k2 + 5k − 2 is an integer, it follows that 3n2 + 5n− 3 is an odd integer.

Example 0.3.10. Prove that if a, b, c are integers, then ab+ ac+ bc is even if a and b are even.

Proof. We will assume that a, b, and c are integers such that a and b are even. By definition, there

exist integers k and ℓ such that a = 2k and b = 2ℓ. Consequently, we have that

ab+ ac+ bc = (2k)(2ℓ) + (2k)c+ (2ℓ)c = 4kℓ+ 2(ck) + 2(cℓ) = 2(ck + cℓ+ 2kℓ).

Considering that ck + cℓ+ 2kℓ is an integer, it follows that ab+ ac+ bc is an even integer.

0.3.2 Proof by Contrapositive

Consider any pair of statements P and Q. Recall from Section 0.2.5 that the contrapositive of

the conditional statement P ⇒ Q is the conditional statement ¬Q ⇒ ¬P. By the result of Table

15 and Proposition 0.2.37, any conditional statement is logically equivalent to its contrapositive.

Consequently, the proof by contrapositive is a proof technique that exploits this logical equiva-

lence. Explicitly, a proof by contrapositive is used to establish the verity of a conditional statement

P ⇒ Q by instead demonstrating the truth of its contrapositive statement ¬Q⇒ ¬P and using the

logical equivalence of the two statements to conclude the truth of the original implication P ⇒ Q.

Bearing this in mind, a typical proof by contrapositive ought to begin with the phrase, “Suppose

that ¬Q is true” and end with the phrase, “We conclude that ¬P is true.”

Before we proceed with an illustration of the technique of proof by contrapositive, we turn our

attention to the law of inference called modus tollens that is closely related to the law of modus

ponens and asserts that the conditional statement [¬Q ∧ (P ⇒ Q)] ⇒ ¬P is a tautology.

P Q ¬P ¬Q P ⇒ Q ¬Q ∧ (P ⇒ Q) [¬Q ∧ (P ⇒ Q)] ⇒ ¬P
T T F F T F T

T F F T F F T

F T T F T F T

F F T T T T T

Table 19: the truth table for modus tollens [¬Q ∧ (P ⇒ Q)] ⇒ ¬P



56 CHAPTER 0. ESSENTIAL TOPICS IN MODERN MATHEMATICS

Proof by contrapositive is a powerful technique that is most useful when either the verity of Q is

difficult to deduce from the verity of P or ¬Q is a stronger hypothesis than P itself. We illustrate

the importance and usefulness of the proof by contrapositive in the following examples. Be sure to

make note of where a direct proof might falter or what difficulties arise from weak assumptions.

Example 0.3.11. Prove that if n is an integer, then n is even if and only if n2 is even.

Solution. Consider the following statements involving an integer n.

P (n) : The integer n is even.

Q(n) : The integer n2 is even.

We seek to establish the veracity of the biconditional statement P (n) ⇔ Q(n) for each integer n.

Consequently, we must establish that both the implication P (n) ⇒ Q(n) and its converse Q(n) ⇒
P (n) are true for each integer n. One direction is fairly straightforward: if the integer n is even, then

there exists an integer k such that n = 2k. By squaring both sides of this equation, we conclude

that n2 = (2k)2 = 4k2 = 2(2k2) is even because 2k2 is an integer. Conversely, if we assume that n

is an integer such that n2 is even, then there exists an integer k such that n2 = 2k. Unfortunately,

this assumption does not afford us much deductive power: it is unclear to the author (and likely

to the reader) at this point why the equation n2 = 2k entails that n must be even. (Later, we will

learn about division by prime numbers, but for now, we make no assumption that the reader is

familiar with this technique.) Consequently, the hypothesis of Q(n) is relatively “weak.”

We may therefore seek to prove the conditional statement Q(n) ⇒ P (n) by contrapositive:

indeed, we fare immediately better using this proof technique because the assumption ¬P (n) that
n is an odd integer is “stronger” than the assumption that n2 is an even integer. Concretely, if n

is an odd integer, then n = 2k + 1 for some integer k. By squaring both sides of this equation, we

find that n2 = (2k + 1)2 = 4k2 + 4k + 1 = 2(2k2 + 2k) + 1. Considering that 2k2 + 2k is an integer,

we conclude that n2 is an odd integer; thus, our proof by contrapositive is complete. ⋄

Proof. (Example 0.3.11) We will assume first that n is an even integer. By definition, there exists

an integer k satisfying that n = 2k. Consequently, by squaring both sides of this equation, we find

that n2 = (2k)2 = 4k2 = 2(2k2). Considering that 2k2 is an integer, it follows that n2 is even.

Conversely, we will prove the converse by contrapositive. We must assume to this end that n is

an odd integer. By definition of an odd integer, there exists an integer k such that n = 2k + 1. By

squaring both sides of this equation, we find that n2 = (2k + 1)2 = 4k2 + 4k + 1 = 2(2k2 + 2k) + 1.

Considering that 2k2 + 2k is an integer, it follows that n2 is an odd integer, as desired.

Example 0.3.12. Prove that if n is an integer such that 7n+ 6 is even, then n is even.

Solution. We might first attempt a direct proof. Observe that if 7n+6 is even, then 7n+6 = 2k for

some integer k. By subtracting 6 from both sides, we find that 7n = 2k−6 = 2(k−3); however, it is

here that things become unclear without a solid understanding of how prime numbers behave with

respect to divisibility. Consequently, a direct proof is unsatisfactory; on the other hand, we might

fare better with a proof by contrapositive. Observe that if n is odd, then there exists an integer k

such that n = 2k + 1 and 7n+ 6 = 7(2k + 1) + 6 = 14k + 13 = (14k + 12) + 1 = 2(7k + 6) + 1. We

conclude therefore that if n is odd, then 7n+ 6 is odd, hence the contrapositive is true. ⋄
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Proof. (Example 0.3.12) We will prove the contrapositive of the statement. We must assume to

this end that n is an odd integer. By definition of an odd integer, there exists an integer k such

that n = 2k+ 1. Observe that 7n+ 6 = 7(2k+ 1) + 6 = 14k+ 13 = (14k+ 12) + 1 = 2(7k+ 6) + 1.

Considering that 7k + 6 is an integer, it follows that 7n+ 6 is an odd integer, as desired.

Example 0.3.13. Prove that if n is an integer such that 7n− 3 is odd, then 11n+ 6 is even.

Solution. We will first attempt a direct proof. We will assume along these lines that 7n−3 = 2k+1

for some integer k. By adding 4n+ 9 to both sides of this equation, we find that

11n+ 6 = (7n− 3) + (4n+ 9) = (2k + 1) + (4n+ 9) = 2k + 4n+ 10 = 2(k + 2n+ 5)

so that 11n+6 is an even integer because k+2n+5 is an integer. But perhaps it seems miraculous

to the reader that we were able to add 4n+9 to both sides of the equation to obtain a direct proof.

Bearing this in mind, we might seek a proof by contrapositive; this would entail that 11n+6 = 2k+1

for some integer k so that 11n = 2k − 5. We are at this point stuck because it is not clear how to

extract any meaning from this equation. Our intuition might suggest that if 7n− 3 is odd, then n

must be even: indeed, an odd integer times an odd integer is an odd integer, and the difference of

two odd integers is an odd integer, so n cannot (ostensibly) be odd. We are therefore brought to

the potential midpoint in the present problem to prove that if 7n− 3 is odd, then n is even. ⋄

Often, the proof of an assertion could benefit from (or potentially even requires) some more

powerful observation. Conventionally, such a helping proposition is referred to as a lemma. Let us

state and prove a lemma that will make the proof of the previous example follow more efficiently.

Lemma 0.3.14. If n is an integer such that 7n− 3 is an odd integer, then n is even.

Solution. We might first attempt a direct proof: indeed, suppose that 7n − 3 = 2k + 1 for some

integer k. We have that 7n = 2k + 4 = 2(k + 2). But again, without knowledge of divisibility of

prime numbers, this equation is rather useless; we will therefore attempt a proof by contrapositive

for this lemma. Observe that if n is odd, then there exists an integer k satisfying that n = 2k + 1.

Consequently, we have that 7n− 3 = 7(2k + 1)− 3 = 14k + 4 = 2(7k + 2) is even, as desired. ⋄

Proof. (Lemma 0.3.14) We will prove the contrapositive of the statement of the lemma. We must

assume to this end that n is an odd integer. By definition of an odd integer, there exists an integer

k such that n = 2k + 1. Observe that 7n − 3 = 7(2k + 1) − 3 = 14k + 4 = 2(7k + 2). Considering

that 7k + 2 is an integer, it follows that 7n+ 6 is an even integer, as desired.

Proof. (Example 0.3.13) By Lemma 0.3.14, if n is an integer such that 7n−3 is odd, then n is even.

Consequently, there exists an integer k such that n = 2k. Even more, we have that

11n+ 6 = 11(2k) + 6 = 22k + 6 = 2(11k + 3).

Considering that 11k + 3 is an integer, we conclude that 11n+ 6 is an even integer.

Example 0.3.15. Prove that if n is any integer, then 2n2 + n is odd if and only if cos
(
nπ
2

)
= 0.
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Solution. Glancing at this proposition, it might seem quite unwieldy — after all, we are comparing

the parity of an integer 2n2+n with the roots of the cosine function — but if one takes a moment to

recognize the values this cosine sequences takes, the proof strategy becomes clear: indeed, computing

cos
(
nπ
2

)
= 0 for some integers n, the reader will have a much better handle of the situation.

cos(0) = 1 cos
(π
2

)
= 0 cos(π) = −1 cos

(
3π

2

)
= 0

Consequently, we deduce that cos
(
nπ
2

)
= 0 if and only if n is odd. We are lead to the following. ⋄

Lemma 0.3.16. If n is an integer, then cos
(
nπ
2

)
= 0 if and only if n is odd.

Proof. By elementary trigonometry, we have that cos
(
nπ
2

)
= 0 if and only if nπ

2
= (2k+1)π

2
for some

integer k if and only if n = 2k + 1 for some integer k if and only if n is an odd integer.

Proof. (Example 0.3.15) By Lemma 0.3.16, it suffices to prove that 2n2 + n is odd if and only if n

is odd. We will assume first that n is an odd integer. By definition of an odd integer, there exists

an integer k such that n = 2k + 1. Consequently, we have that

2n2 + n = 2(2k + 1)2 + (2k + 1) = 2(4k2 + 4k + 1) + (2k + 1) = 2(4k2 + 5k + 1) + 1.

Considering that 4k2 + 5k + 1 is an integer, it follows that 2n2 + n is odd.

Conversely, we will prove the contrapositive of the converse. We must assume to this end that

n is an even integer. By definition of an even integer, we have that n = 2k for some integer k.

Consequently, we find that 2n2 + n = 2(2k)2 + (2k) = 8k2 + 2k = 2(4k2 + k). Considering that

4k2 + k is an integer, it follows that 2n2 + n is an even integer, as desired.

Example 0.3.17. Prove that if x and y are real numbers such that x3+xy2 ≤ y3+x2y, then x ≤ y.

Proof. We will prove the contrapositive statement. We must assume to this end that x and y are real

numbers such that x > y. By multiplying this inequality by the non-negative real number y2, we find

that xy2 ≥ y3. Likewise, by multiplying this inequality by the non-negative real number x2, we find

that x3 ≥ x2y. By adding these two inequalities, we conclude that x3+xy2 ≥ y3+x2y. Considering

that x > y, one of the real numbers x or y must be nonzero, hence one of the inequalities xy2 ≥ y3

or x3 ≥ x2y must be strict. Consequently, we conclude that x3 + xy2 > y3 + x2y, as desired.

0.3.3 Proof by Cases

Consider any open sentence P (x1, . . . , xn) involving the n variables x1, . . . , xn with domain S. Proof

by cases is an exhaustive proof technique that exploits some “finiteness property” of the set S.

Often, this “finiteness property” of S can be realized as one of the following situations.

(a.) We have that S is finite and it is possible to prove the statement P (x) for each element x ∈ S.

(b.) We have that S admits a finite partition S = S1 ∪S2 ∪ · · · ∪Sn and it is possible to prove the

statement P (x) for each element x ∈ Si for each integer 1 ≤ i ≤ n.

Concretely, we will illustrate the proof by cases by completing the following typical examples.
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Example 0.3.18. Consider the finite subset S =
{
1,
√
2, 2

√
2
}
of R. Prove that for every element

x ∈ S, there exists an element y ∈ S such that x− y ≤ 0 and x2 + y2 is a perfect square.

Proof. We may consider the following three cases.

1.) If x = 1, then observe that for y = 2
√
2, we have that x < y so that x− y ≤ 0 and

x2 + y2 = (1)2 +
(
2
√
2
)2

= 1 + 8 = 9 = 32.

2.) If x =
√
2, then observe that for y =

√
2, we have that x = y so that x− y ≤ 0 and

x2 + y2 =
(√

2
)2

+
(
2
√
2
)2

= 2 + 2 = 4 = 22.

3.) If x = 2
√
2, then observe that for y = 2

√
2, we have that x = y so that x− y ≤ 0 and

x2 + y2 =
(
2
√
2
)2

+
(
2
√
2
)2

= 8 + 8 = 16 = 42.

We have exhausted all possibilities for an element x ∈ S, hence our proof is complete.

Example 0.3.19. Consider the finite subset S = {2, 3, 4} of N. Prove that for every element x ∈ S

such that x2(x− 1)2/4 is even, we have that x2(x+ 1)2/4 is even.

Proof. We may consider the following three cases.

1.) If x = 2, then x2(x− 1)2/4 = 22(2− 1)2/4 = 1 is not even, so we proceed to the next case.

2.) If x = 3, then x2(x− 1)2/4 = 32(3− 1)2/4 = 9 is not even, so we proceed to the next case.

3.) If x = 4, then each of x2(x− 1)2/4 and x2(x+ 1)2/4 have a factor of 4, so they are even.

We have exhausted all possibilities for an element x ∈ S, hence our proof is complete.

Essentially, a proof by cases for an open sentence P (x) with finite domain S amounts to verifying

P (x) for each element x ∈ S. Consequently, there are at most |S| cases in this situation.

We turn our attention next to open sentences that involve integers or elements of other infinite

sets. Recall that an integer is either even or odd but not both; the quality that an integer is even

or odd is called the parity of the integer. Consequently, if we encounter a statement involving an

integer, then it is possible to construct a proof by cases by inspecting the situation when n is even

and when n is odd separately. We illustrate this idea concretely in the following three examples.

Example 0.3.20. Prove that for every integer n, we have that n2 + 3n− 4 is even.

Proof. We may consider the following two cases.

1.) By definition, if n is even, then there exists an integer k such that n = 2k. Consequently, we

have that n2 +3n− 4 = (2k)2 +3(2k)− 4 = 4k2 +6k− 4 = 2(2k2 +3k− 2). Considering that

2k2 + 3k − 2 is an integer, we conclude that n2 + 3n− 4 is an even integer.
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2.) By definition, if n is odd, then there exists an integer k such that n = 2k+1. Consequently, we

have that n2+3n−4 = (2k+1)2+3(2k+1)−4 = (4k2+4k+1)+(6k+3)−4 = 2(2k2+5k).

Considering that 2k2 + 10k is an integer, we conclude that n2 + 3n− 4 is an even integer.

We have exhausted all possibilities for the parity of the integer n, hence our proof is complete.

Example 0.3.21. Prove that any integers x and y have the same parity if and only if x+y is even.

Proof. We will first prove the statement that if x and y are any integers of the same parity, then

x+ y is even. Consider toward this end the following two cases.

1.) By definition, if the integers x and y are both even, then there exist integers k and ℓ satisfying

that x = 2k and y = 2ℓ. Consequently, we have that x+ y = 2k + 2ℓ = 2(k + ℓ). Considering

that k + ℓ is an integer, we conclude that x+ y is even, as desired.

2.) By definition, if the integers x and y are both odd, then there exist integers k and ℓ such that

x = 2k+1 and y = 2ℓ+1. Consequently, we have that x+y = (2k+1)+(2ℓ+1) = 2(k+ℓ+1).

Considering that k + ℓ+ 1 is an integer, we conclude that x+ y is even, as desired.

We have exhausted all possibilities for the parity of the integers x and y, hence the statement holds.

Conversely, we will prove the contrapositive of the statement that if x + y is even, then the

integers x and y have the same parity. Explicitly, we will demonstrate that if x and y have opposite

parity, then the integer x+ y is odd. We may assume without loss of generality that x is even

and y is odd. Consequently, there exist integers k and ℓ such that x = 2k and y = 2ℓ+ 1. Observe

that x+ y = 2k + (2ℓ+ 1) = 2(k + ℓ) + 1. Because k + ℓ is an integer, the integer x+ y is odd.

Remark 0.3.22. We reflect here on two important features of the proof of Example 0.3.21.

1.) First, it is important to note that the biconditional (“if and only if”) statement was proved by

using a proof by cases for one direction of the biconditional (the “only if” direction) and using

a proof by contrapositive for the other direction (the “if” direction). Often, we will be required

to use multiple proof techniques in tandem to write a satisfactory proof of a proposition.

2.) We have introduced in the body of the proof of Example 0.3.21 an important phrase in the

trade of mathematical writing: “without loss of generality.” Essentially, what this means is

that the author is asserting to the reader that there is no need to distinguish between the two

variables x and y in the above proof: indeed, it does not matter if x is even and y is odd or

vice-versa; the result would work the same if the names (or roles) of x and y were swapped.

One way to think about the phrase “without loss of generality” is that it can be useful to save

the author and the reader precious time if the same (or at least a similar) proof could be used

for the other cases that would be necessary to consider in the proof by cases; therefore, one

might instead use the phrase, “A similar proof can be used to establish the result.”

Example 0.3.23. Prove that 3x+ 5y + 7z is odd if exactly two of the integers x, y, z are even.

Proof. Observe that 3x + 5y + 7z = 2(x + 2y + 3z) + x + y + z. Consequently, it suffices to prove

that x+ y+ z is odd by Example 0.3.21: indeed, if x+ y+ z were even, then 3x+5y+7z would be

even. Consequently, we may assume without loss of generality that x and y are even and z is odd.
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Explicitly, suppose that there exist integers k, ℓ, and m such that x = 2k, y = 2ℓ, and z = 2m+ 1.

We have that x+ y + z = 2k + 2ℓ+ (2m+ 1) = 2(k + ℓ+m) + 1, hence x+ y + z is odd.

Remark 0.3.24. Observe that the proof of Example 0.3.23 is quite clever and drastically reduces

the amount of work required to prove the statement. We immediately used the result of Example

0.3.21 to reduce the problem at hand to simply demonstrating that x+y+z is odd whenever exactly

two of the integers x, y, and z are even; then, because each of the integers x, y, and z appeared

as terms of the sum, there was no need to distinguish between them, so we could appeal to the

phrase “without loss of generality” to reduce a proof potentially involving three cases to just one

case. Compare this with the amount required to write a proof for Example 0.3.21 with three cases.

Last, a proof by cases can sometimes be used to handle statements involving the union of sets.

Example 0.3.25. Prove that if A,B, and C are sets with x ∈ A∪B, then x ∈ A∪C or x ∈ B∪C.

Proof. Observe that x ∈ A ∪B if and only if x ∈ A or x ∈ B. Consequently, there are two cases.

1.) If x ∈ A, then x ∈ A ∪ C by definition of the set union.

2.) If x ∈ B, then x ∈ B ∪ C by definition of the set union.

Either way, we conclude that x ∈ A ∪ C or x ∈ B ∪ C, as desired.

Remark 0.3.26. We note that in the previous proof, the sets A and B are analogous: indeed, our

ultimate objective is to verify a disjunctive statement in the sets A ∪ C and B ∪ C. Consequently,
it is possible to use the phrase “without loss of generality” rather than appeal to a proof by cases.

Proof. (Example 0.3.25) Considering that x ∈ A∪B if and only if x ∈ A or x ∈ B, we may assume

without loss of generality that x ∈ A. We conclude that x ∈ A ∪ C, as desired.

0.3.4 Counterexamples

Before we are able to prove a statement, we must first deduce that it is true. Often, this amounts to

computing several examples to convince ourselves that the statement is valid. Best case scenario,

either this practice reveals the nature of a potential proof or a counterexample is revealed to us.

By counterexample, we mean an explicit instance for which the statement in question is false.

Example 0.3.27. Consider the following conditional statement.

P (n) : If n is an integer, then 5n+ 4 is even.

Considering that 5(1) + 4 = 9 is odd, the conditional statement P (1) is false. Consequently, the

integer n0 = 1 provides a counterexample and illustrates that P (n) is not a true statement.

Example 0.3.28. Consider the following conditional statement.

P (x) : If x is a real number, then x− ex > 0.

Considering that 0 − e0 = 0 − 1 = −1 ≤ 0, the conditional statement P (0) is false. Consequently,

the real number x0 = 0 provides a counterexample and illustrates that P (x) is not a true statement.
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Example 0.3.29. Consider the following conditional statement.

P (x) : If x is a real number, then cot2(x) + 1 = csc2(x).

Considering that cot(0) and csc(0) are undefined, the conditional statement P (0) is false. Conse-

quently, the real number x0 = 0 provides a counterexample and illustrates that P (x) is not true.

Counterexamples can be astonishingly difficult to determine in many cases: in fact, it is a highly

active area of mathematical research to find counterexamples to certain statements of particular

interest. Explicitly, the desire for a counterexample is illuminated by the following observation.

Consider an open sentence P (x) in a variable x with domain S. Recall that the quantified statement

“∀x ∈ S, P (x)” is true if and only if P (x) is true for all elements x ∈ S. By Theorem 0.2.56, if we

wish to disprove the statement “∀x ∈ S, P (x)” (or show that this statement is false), it suffices to

exhibit an element x0 ∈ S such that P (x0) is false. By name, this element x0 is a counterexample.

Example 0.3.30. Disprove the following conditional statement.

P (x) : If x is a real number, then
x3 + 1

x3 − 1
=
x2 − x+ 1

x2 + x+ 1
.

Solution. Observe that if x = 1, then x3 − 1 = 0, hence the left-hand fraction in the statement of

P (x) is undefined. Consequently, x = 1 is a counterexample to the conditional statement P (x). ⋄

Example 0.3.31. Disprove the following conditional statement.

P (x, y) : If x and y are real numbers, then x2 − 4xy + y2 > 0.

Solution. Observe that if x = 1 and y = 1, then x2 − 4xy+ y2 = 1− 4+1 = −2 ≤ 0. Consequently,

the ordered pair (x, y) = (1, 1) is a counterexample to the conditional statement P (x, y). ⋄

Example 0.3.32. Disprove the following conditional statement.

P (x, y, z) : If x, y, and z are positive real numbers, then (xy)(xz) = xyz.

Solution. Observe that if x = 2, y = 1, and z = 3, then (xy)(xz) = (21)(23) = 16 and xyz = 8, hence

the ordered triple (x, y, z) = (2, 1, 3) is a counterexample to the conditional statement P (x, y, z). ⋄

Be sure to make note of the form we use when solving a problem that asks us to disprove some-

thing: we begin with an italicized “Solution” and a period; we exhibit an explicit counterexample to

the statement; and we conclude with an empty diamond ⋄ to signify the conclusion of our solution.

0.3.5 Proof by Contradiction

Last but certainly not least, the proof by contradiction (or reductio ad absurdum) rounds out

the tools that we will most often use in mathematical proofs. Essentially, the proof by contradiction

constitutes a valid proof technique by a combination of the Law of Excluded Middle, the Law of

Non-Contradiction, and Table 14. We bear out the details in two cases of particular interest. We

will first assume toward this end that P is a statement that we wish to prove is true.
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1.) By the Law of the Excluded Middle, either P is true or P is false.

2.) By the Law of Non-Contradiction, if P is not false, then P is true.

3.) Consequently, in order to demonstrate that P is true, it suffices to prove that P is not false.

We assume toward this end that P is in fact false, i.e., we assume that ¬P is true.

4.) By some properties of ¬P, it might be possible to derive a contradiction C, i.e., a statement

C that is false with respect to all possible truth inputs. Crucially, the contradiction C could

reveal itself as a direct consequence of the assumption ¬P or it might be possible to derive a

contradiction C from some other known facts (e.g., definitions, propositions, and theorems).

5.) We conclude that the conditional statement ¬P ⇒ C is true. But C is false, so ¬P must be

false; therefore, our initial assumption that P is false is untenable, so P must be true.

Often, a proof by contradiction is desirable to prove a conditional statement P ⇒ Q. We outline

next how a proof by contradiction for such a statement could be carried out and why it is valid.

1.) By the Law of the Excluded Middle, either P ⇒ Q is true or P ⇒ Q is false.

2.) By the Law of Non-Contradiction, if P ⇒ Q is not false, then P ⇒ Q is true.

3.) Consequently, it suffices to prove that P ⇒ Q is not false. By Table 7, we must show that if

Q is false, then P is false. We assume toward this end that Q is false and P is true.

4.) Like in the case of the proof by contradiction discussed above, it might be possible to derive

a contradiction C from some properties of ¬Q; this would entail that ¬Q⇒ C is true.

5.) Observe that if C is false and ¬Q ⇒ C is true, then ¬Q is false; therefore, our assumption

that Q is false is untenable, hence Q must be true so that P ⇒ Q is true.

We point out at this time that the writer should always mention in the first line of the proof the

proof technique that will be used. Best practice dictates (in the case of a proof by contradiction)

that this is achieved using the phrase, “Suppose on the contrary that P is true and Q is false”

or, “We will assume toward a contradiction that P is true and Q is false.” Even more, the writer

should take care to point out exactly what contradiction is derived in a proof by contradiction.

Example 0.3.33. Prove that there is no smallest integer.

Proof. Suppose on the contrary that n is the smallest integer. Observe that n− 1 is an integer. By

adding n to both sides of the inequality −1 < 0, we find that n− 1 < n. But this is a contradiction:

if n is the smallest integer, there can be no integer less than n. Our assumption that there exists a

smallest integer is therefore untenable, hence we conclude that there is no smallest integer.

Example 0.3.34. Prove that no integer is both even and odd.

Proof. Suppose on the contrary that n is an even integer that is also odd. By definition of an even

integer, there exists an integer k such that n = 2k. By definition of an odd integer, there exists an

integer ℓ such that n = 2ℓ+1. Considering that n = n is a tautology, it follows that 2k = 2ℓ+1 so
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that 1 = 2k − 2ℓ = 2(k − ℓ). By dividing both sides of this equation by 2, we find that k − ℓ = 1
2
.

But this is a contradiction: the difference of two integers is an integer, but the rational number 1
2
is

not an integer. Our assumption that there exists an integer that is both even and odd is therefore

untenable, hence we conclude that no integer is both even and odd.

Example 0.3.35. Prove that no even integer is the sum of three odd integers.

Proof. Suppose on the contrary that n is an even integer that is the sum of three odd integers a,

b, and c. By definition of an odd integer, we have that a = 2k + 1, b = 2ℓ + 1, and c = 2m + 1 for

some integers k, ℓ, and m. Considering that n = a+ b+ c, it follows that

n = (2k + 1) + (2ℓ+ 1) + (2m+ 1) = 2(k + ℓ+m+ 1) + 1,

hence n is odd. But this is a contradiction: by Example 0.3.34, we have that no integer is both even

and odd. Our assumption that there exists an even integer that is the sum of three odd integers is

untenable, hence we conclude that no even integer is the sum of three odd integers.

Example 0.3.36. Prove that if a, b, and c are integers such that a2 + b2 = c2, then a or b is even.

Proof. Suppose on the contrary that a and b are both odd integers. By definition of an odd integer,

we have that a = 2k + 1 and b = 2ℓ+ 1 for some integers k and ℓ. Consequently, we find that

c2 = a2 + b2 = (2k + 1)2 + (2ℓ+ 1)2 = (4k2 + 4k + 1) + (4ℓ2 + 4ℓ+ 1) = 2(2k2 + 2k + 2ℓ2 + 2ℓ+ 1).

Considering that 2k2 +2k+2ℓ2 +2ℓ+1 is an integer, we conclude that c2 is even so that c is even.

By definition of an even integer, we have that c = 2m for some integer m so that

4m2 = (2m)2 = c2 = 2(2k2 + 2k + 2ℓ2 + 2ℓ+ 1).

Cancelling one factor of 2 from both sides of this equation yields that

2m2 = 2k2 + 2k + 2ℓ2 + 2ℓ+ 1 = 2(k2 + k + ℓ2 + ℓ) + 1.

But this is a contradiction: the left-hand side shows an even integer, but the right-hand side shows

an odd integer. Our assumption that a and b are odd is untenable, hence a or b is even.

Example 0.3.37. Prove that if x is even and y is odd, then x2 + 2y2 is not divisible by 4.

Proof. Suppose on the contrary that x is an even integer and y is an odd integer such that x2+2y2

is divisible by 4. By definition of the parity of an integer, we have that x = 2k and y = 2ℓ + 1 for

some integers k and ℓ. Consequently, we may simplify the expression x2 + 2y2 to find that

x2 + 2y2 = (2k)2 + (2ℓ+ 1)2 = 4k2 + 2(4ℓ2 + 4ℓ+ 1) = 4(k2 + 2ℓ2 + 2ℓ) + 2.

By assumption that x2 + 2y2 is divisible by 4, there exists an integer m such that x2 + 2y2 = 4m.

Combined with our previous displayed equation, this yields that

4m = 4(k2 + 2ℓ2 + 2ℓ) + 2,
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from which we deduce that 2 = 4m− 4(k2+2ℓ2+2ℓ) = 4(m− k2− 2ℓ2− 2ℓ). By cancelling a factor

of 2 from both sides, we find that 1 = 2(m−k2−2ℓ2−2ℓ). But this is a contradiction: the integer 1

is odd, so it cannot be divisible by 2 by Example 0.3.34. Our assumption that x is an even integer

and y is an odd integer such that x2+2y2 is divisible by 4 is therefore untenable, hence we conclude

that if x is an even integer and y is an odd integer, then x2 + 2y2 is not divisible by 4.

Example 0.3.38. Prove that
√
2 is irrational.

Proof. Suppose on the contrary that
√
2 is rational. By definition of a rational number, there exist

integers a and b such that b is nonzero; a and b possess no common factors other than ±1; and

√
2 =

a

b
.

By squaring both sides of this equation and clearing the denominator, we find that

a2 = 2b2.

Consequently, the integer a2 is even. Considering that the square of an integer is even if and only

if that integer is even, it follows that a is even so that a = 2k for some integer k. By substituting

this identity back into our above displayed equation, we find that

4k2 = (2k)2 = a2 = 2b2.

Cancelling a factor of 2 from both sides yields that b2 is an even integer since

b2 = 2k2.

By the same rationale as before, we conclude that b is even so that b = 2ℓ for some integer ℓ. But

this is a contradiction: we had originally assumed that a and b possess no common factors other

than ±1, but if a and b are both even, then they have a common factor of 2. Our assumption that√
2 is rational is therefore untenable, hence we conclude that

√
2 is irrational.

0.3.6 Existence Proofs

Complementary to counterexamples, proving the existence of certain mathematical objects or struc-

tures with desirable properties is also a foremost concern throughout mathematics. We remind the

reader at this point that an existence statement is a quantified statement of the form

∃x ∈ S, P (x) : There exists an element x ∈ S such that P (x).

for some open sentence P (x) in a variable x with domain S. Consequently, in order to determine the

verity of an existence statement, it suffices to provide an explicit example of an element x0 ∈ S such

that P (x0) is true; if this is possible, then the attendant proof of the existence statement is called a

constructive proof because the element x0 ∈ S is often “constructed” or produced by explicitly

performing some algebraic manipulation or computation. We provide some examples below.

Example 0.3.39. Prove that there exists an integer whose cube is equal to its square.
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Solution. Before we prove this existence statement, we may find it beneficial to write the statement

in symbols. Observe that if n is an integer, then n3 is its cube and n2 is its square. Consequently,

P (n) : The integer n satisfies that n3 = n2.

is the open sentence that n is an integer whose cube is equal to its square. Ultimately, we are trying

to prove the following existentially quantified statement in the variable n over the domain Z.

∃n ∈ Z, P (n) : There exists an integer n such that n3 = n2.

Observe that if n3 = n2, then n3 − n2 = 0 so that n2(n− 1) = 0. By the Zero Product Property, it

follows that n = 0 or n = 1. Either one of these integers provides an explicit solution to the integer

equation n3 = n2, hence we have the ingredients to write a constructive proof for the statement. ⋄

Proof. Observe that the integer n = 1 satisfies that n3 = 13 = 1 = 12 = n2, and the claim holds.

Example 0.3.40. Prove that there exist real numbers x and y such that (x+ y)2 = x2 + y2.

Solution. Before we determine a proof of the statement, we note that we seek to establish the verity

of the following existential statement in the variables x and y over the domain R.

∃x, y ∈ R, P (x, y) : There exist real numbers x and y such that (x+ y)2 = x2 + y2.

Observe that if (x + y)2 = x2 + y2, then x2 + 2xy + y2 = x2 + y2 so that 2xy = 0. By the Zero

Product Property, it follows that x = 0 or y = 0. Either way, the statement that (x+ y)2 = x2 + y2

will be true for any value of the variables x and y so long as one of them is zero: indeed, if y = 0,

then (x+ y)2 = (x+0)2 = x2 = x2+02 = x2+ y2. We have the makings of a constructive proof. ⋄

Proof. Observe that the real numbers x = 1 and y = 0 satisfy that

(x+ y)2 = (1 + 0)2 = 12 = 12 + 02 = x2 + y2.

Consequently, the statement in question holds, and our proof is complete.

Example 0.3.41. Prove that f(x) = x5 + x4 + x3 + x2 + x+ 1 has at least one real root.

Solution. By definition of a root of a function, the statement we are tasked to prove is as follows.

∃x ∈ R, P (x) : There exists a real number x such that f(x) = 0.

Observe that f(−1) = (−1)5+(−1)4+(−1)3+(−1)2+(−1)+1 = −3+3 = 0, hence a direct proof

is possible because we have found an explicit example of a real root of f(x). ⋄

Proof. Observe that the real number x = −1 is a root of f(x) since we have that

f(−1) = (−1)5 + (−1)4 + (−1)3 + (−1)2 + (−1) + 1 = −3 + 3 = 0.
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Remark 0.3.42. We make an important and necessary observation about the serendipitous nature

of the existence proof provided in Example 0.3.41. Exactly how did we stumble upon the real number

x = −1, and why did we suspect that it is a root of the polynomial f(x) = x5+x4+x3+x2+x+1?

Unfortunately, this was simply a lucky coincidence — the product of years of schema and knowing

where to look. One natural starting point in the aforementioned example is to begin by plugging in

integer values of x near zero. Plugging in x = 0 yields that f(0) = 0, and plugging in x = 1 yields

that f(1) = 6 — both failures. We were exceedingly lucky that our next guess x = −1 worked.

Generally, the roots of a real function f(x) are seriously difficult to compute. By the Quadratic

Formula, the roots of any real function of the form f(x) = ax2 + bx+ c with a nonzero are known;

there are also the Cubic Formula and the Quartic Formula, but these are typically not taught, and

students are not expected to know them (the author freely admits to not knowing them, either).

Beyond that, it is a landmark result of Galois Theory that there is no closed form expression for the

roots of a real polynomial of degree at least five. Consequently, there is little hope for deducing the

roots of a polynomial of degree five or larger — let alone trying to find the roots of a real function

that is not a polynomial (other than certain trigonometric, inverse trigonometric, or logarithmic

functions) — for students in this course without specialized knowledge (such as the Newton-Raphson

Method or other recursive numerical methods for finding roots of differentiable functions).

Even still, using elementary calculus, there is a way to determine existence of roots of continuous

functions without ever knowing exactly what those roots are! Before we provide a proof along these

lines, we must first recall the following important fact about continuous functions from Calculus I.

Theorem 0.3.43 (Intermediate Value Theorem). Every real univariate function f : Df → R with

domain Df ⊆ R that is continuous on a closed and bounded interval [a, b] satisfies that for every real

number C between f(a) and f(b), there exists a real number c such that a ≤ c ≤ b and f(c) = C.

Concretely, the Intermediate Value Theorem states any every real function f(x) that is contin-

uous on a closed and bounded interval [a, b] achieves every possible y-value between f(a) and f(b)

for some x-value between a and b. Graphically, the intuition is that a continuous function can be

represented visually by drawing without lifting one’s pencil, hence as the curve y = f(x) is traced

out from x = a to x = b along the x-axis, every real number along the y-axis between f(a) and f(b)

must correspond to some point on the x-axis. Consider the picture below for an illustration.

a c b

f(a)

C

f(b)

f(x)

x

y

https://en.wikipedia.org/wiki/Cubic_equation#General_cubic_formula
https://en.wikipedia.org/wiki/Quartic_function#General_formula_for_roots
https://en.wikipedia.org/wiki/Galois_theory#A_non-solvable_quintic_example
https://mathworld.wolfram.com/NewtonsMethod.html
https://mathworld.wolfram.com/NewtonsMethod.html
https://dylan-c-beck.github.io/ma172_MA172%20Lecture%20Notes.pdf
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Consequently, the upshot is that in order to prove the existence of roots of a continuous function

f(x), we may find real numbers a and b such that f(a) and f(b) have opposite sign, i.e., f(a) < 0

and f(b) > 0 (or vice-versa); then, because f(x) is a continuous function such that f(a) and f(b)

have opposite sign, there must exist a real number c such that a ≤ c ≤ b and f(c) = 0. We refer to

such a proof of the existence of the roots of a continuous function as a non-constructive proof: in

fact, we are not explicitly exhibiting the roots of the function. We are instead simply relying on the

Intermediate Value Theorem to conclude that some root must exist. Generally, a non-constructive

proof relies on some well-known fact, theorem, or definition. Consequently, a non-constructive proof

may not be direct. We conclude this section with several examples of non-constructive proofs.

Example 0.3.44. Prove that f(x) = x5 + x4 + x3 + x2 + x+ 1 has at least one real root.

Proof. Observe that the polynomial f(x) is a continuous function. Considering that f(−2) = −21

and f(0) = 1, by the Intermediate Value Theorem, there exists a real number c such that −2 < c < 0

and f(c) = 0. By definition, the real number c is a root of the polynomial f(x), as desired.

Example 0.3.45. Prove that f(x) = ex − 3x has at least one real root.

Proof. Observe that f(x) is a continuous function since it is the difference of the continuous functions

ex and 3x. Considering that f(1) = e−3 < 0 and f(0) = 1 > 0, by the Intermediate Value Theorem,

there exists a real number c such that 0 < c < 1 and f(c) = 0, as desired.

Example 0.3.46. Prove that cos(x)− sin(x) = 1
2
for some real number x such that 0 ≤ x ≤ π

4
.

Proof. Consider the function f(x) = cos(x)− sin(x). Observe that f(x) is continuous because it is

the difference of the continuous functions cos(x) and sin(x). Considering that

f(0) = 1− 0 = 1 ≥ 0 =

√
2

2
−

√
2

2
= f

(π
4

)
,

by the Intermediate Value Theorem, there exists a real number 0 ≤ c ≤ π
4
and f(c) = 1

2
.

Example 0.3.47. Prove that some digit appears infinitely often in the decimal expansion of π.

Solution. Before we outline a proof strategy, we note the novelty of the example. We cannot use

the Intermediate Value Theorem because the statement does not involve a continuous function. We

cannot verify directly that some digit appears infinitely often in the decimal expansion of π because

we cannot check the infinitely many digits in the decimal expansion of π. Consequently, there is no

hope for a constructive proof. Our statement is not conditional, so there is no contrapositive. We

require a proof by contradiction! Observe that the negation of the above statement is, “No digit

appears infinitely often in the decimal expansion of π,” or, “Every digit in the decimal expansion

of π appears finitely many times.” Considering that π is irrational, this statement cannot be true,

so the statement we seek to prove must be true by the Law of Excluded Middle and the Law of

Non-Contradiction. We did not check any digits of π, hence this is a non-constructive proof. ⋄

Proof. On the contrary, suppose that every digit in the decimal expansion of π appears finitely many

times. Considering that the digits in the decimal expansion of any real number are 0, 1, 2, . . . , 9,

the decimal expansion of π contains at most ten digits. But this is a contradiction: if the decimal
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expansion of π is finite, then π is a rational number; however, π is irrational! Consequently, our

assumption that every digit in the decimal expansion of π appears finitely many times is untenable,

hence we conclude that some digit in the decimal expansion of π appears infinitely many times.

0.4 Proofs in the Wild

Once we are satisfactorily acquainted with the basic proof strategies outlined in the previous section,

we may consider examples and write proofs in a variety of familiar mathematical contexts. We aim

throughout this section to employ the techniques of the previous three sections as they pertain to

the study of combinatorics, elementary number theory, modern algebra, and näıve set theory.

0.4.1 Principle of Mathematical Induction

Consider any open sentence P (n) defined for a variable n with domain S ⊆ Z. Observe that if S

admits a smallest element n0, then we may denote n0 = min{n | n ∈ S} since it is the minimum

element of S. We have seen in Section 0.3 that it may be possible to prove the quantified statement

∀n ∈ S, P (n) by cases; however, this may be tedious if S is finite and |S| is large, and it may not be

clear why the statement P (n) is true even if we assume that n is either even or odd. Consequently,

we may require another technique all together to demonstrate that P (n) is true for all n ∈ S.

We turn our attention thus to one of the most useful proof techniques for establishing the verity

of universally quantified statements defined forintegers: a proof by induction appeals to one of the

three forms of the Principle of Mathematical Induction. Before we proceed to the definition,

let us explore some examples of properties of integers for which a proof by induction is appropriate.

Example 0.4.1. Consider the sum of the first n consecutive odd positive integers.

o(n) = 1 + 3 + 5 + · · ·+ (2n− 1) =
n∑

k=1

(2k − 1)

Computing the values of o(n) for the first four positive integers 1 ≤ n ≤ 4 yields that o(1) = 1,

o(2) = 1 + 3 = 4, o(3) = 1 + 3 + 5 = 9, o(4) = 1 + 3 + 5 + 7 = 16, and so on.

n 1 2 3 4 5

o(n) 1 4 9 16 25

Table 20: the sum of first five consecutive odd positive integers

Observe that o(n) = n2 for each integer 1 ≤ n ≤ 5. Continuing with the table, we would find that

o(n) = n2 for all integers 1 ≤ n ≤ k for any positive integer k. Consequently, we have the following.

Conjecture 0.4.2. We have that o(n) = n2 for all integers n ≥ 1 for o(n) as in Example 0.4.1.

Observe that o(1) = 12 and o(n+ 1) = o(n) + (2n+ 1), hence if we were to assume that o(n) = n2

for some integer n ≥ 1, then we would conclude that o(n + 1) = n2 + 2n + 1 = (n + 1)2. We will

soon return to validate this idea as one of the tenants of the Principle of Mathematical Induction!
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Example 0.4.3. Consider the sum of the first n consecutive positive integers.

c(n) = 1 + 2 + 3 + · · ·+ n =
n∑

k=1

k

Computing the values of c(n) for the first four positive integers 1 ≤ n ≤ 4 yields that c(1) = 1,

c(2) = 1 + 2 = 3, c(3) = 1 + 2 + 3 = 6, and c(4) = 1 + 2 + 3 + 4 = 10, and so on.

n 1 2 3 4 5

c(n) 1 3 6 10 15

Table 21: the sum of the first five consecutive positive integers

Unfortunately, the pattern here is not obvious; however, due to a young Gauss, the following strategy

can be employed. Briefly put, the idea is to write down the sum 1 + 2 + 3 + · · ·+ n both forwards

and backwards, adding each column of the sum to determine the value of 2(1 + 2 + 3 + · · ·+ n).

1 + 2 + 3 + · · · + n

+ n + (n− 1) + (n− 2) + · · · + 1

(n+ 1) + (n+ 1) + (n+ 1) + · · · + (n+ 1)

Considering that there are n columns in this table and the sum of each column is n+1, we conclude

that 2(1 + 2 + 3 + · · ·+ n) = n(n+ 1). Consequently, we have the following conjecture.

Conjecture 0.4.4. We have that c(n) = n(n+1)
2

for all integers n ≥ 1 for c(n) as in Example 0.4.3.

Like before, we can readily verify the facts that c(1) = 1 = 1·2
2

and c(n+1) = c(n) + (n+1), hence

if we were to assume that c(n) = n(n+1)
2

for some integer n ≥ 1, then we could conclude that

c(n+ 1) =
n(n+ 1)

2
+ (n+ 1) =

n(n+ 1) + 2(n+ 1)

2
=

(n+ 1)(n+ 2)

2
.

Definition 0.4.5 (Principle of Ordinary Induction). Given any integer n0, consider any open sen-

tence P (n) defined for all integers n ≥ n0. We may define the following criteria.

(a.) We have that P (n0) is a true statement.

(b.) If P (n) is a true statement for some integer n ≥ n0, then P (n+ 1) is a true statement.

Provided that both of these statements are true, it follows that P (n) is true for all integers n ≥ n0.

By the Principle of Ordinary Induction, we can return to prove Conjectures 0.4.2 and 0.4.4.

Proof. (Conjecture 0.4.2) Consider the following open sentence defined for all integers n ≥ 1.

P (n) : We have that 1 + 3 + 5 + · · ·+ (2n− 1) = n2.

We will prove that P (n) is true for all integers n ≥ 1, i.e., we will prove that “∀n ∈ Z≥1, P (n)” is

true. We proceed by the Principle of Ordinary Induction. We must verify the following conditions.

(a.) Observe that P (1) is a true statement because it holds that 1 = 12.

https://en.wikipedia.org/wiki/Triangular_number#Formula
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(b.) We will assume that P (n) is true for some integer n ≥ 1. Consequently, we have that

1 + 3 + 5 + · · ·+ (2n+ 1) = 1 + 3 + 5 + · · ·+ (2n− 1) + (2n+ 1) = n2 + 2n+ 1 = (n+ 1)2.

Considering that (a.) P (1) is a true statement and (b.) P (n+ 1) is true whenever P (n) is true for

some integer n ≥ 1, our proof is complete by the Principle of Ordinary Induction.

Proof. (Conjecture 0.4.4) Consider the following open sentence defined for all integers n ≥ 1.

P (n) : We have that 1 + 2 + 3 + · · ·+ n =
n(n+ 1)

2
.

We will prove that P (n) is true for all integers n ≥ 1, i.e., we will prove that “∀n ∈ Z≥1, P (n)” is

true. We proceed by the Principle of Ordinary Induction. We must verify the following conditions.

(a.) Observe that P (1) is a true statement because it holds that 1 = 1·2
2
.

(b.) We will assume that P (n) is true for some integer n ≥ 1. Consequently, we have that

1 + 2 + 3 + · · ·+ n+ (n+ 1) =
n(n+ 1)

2
+ (n+ 1) =

n(n+ 1) + 2(n+ 1)

2
=

(n+ 1)(n+ 2)

2
.

Considering that (a.) P (1) is a true statement and (b.) P (n+ 1) is true whenever P (n) is true for

some integer n ≥ 1, our proof is complete by the Principle of Ordinary Induction.

Going forward, we will begin any inductive proof by simply stating our intention to use a proof

by induction; however, we will not typically make any explicit reference to the open sentence P (n)

that we intend to prove, and we will abbreviate the steps in an inductive proof under the assumption

that our intended audience is familiar with induction. We illustrate a typical proof by induction.

Example 0.4.6. Prove that 2n > n2 for all integers n ≥ 5.

Proof. We proceed by induction. Observe that 25 = 32 > 25 = 52, hence the claim holds for n = 5.

We will assume inductively that 2n > n2 for some integer n ≥ 5. By hypothesis, we have that

2n+1 = 2 · 2n > 2 · n2,

so it suffices to prove that 2n2 ≥ (n+ 1)2. Considering that n ≥ 5 by our inductive hypothesis, we

have that n2 ≥ 5n and 5n = 4n+ n ≥ 4n+ 5 ≥ 2n+ 1 so that

2n2 = n2 + n2 ≥ n2 + 5n ≥ n2 + 2n+ 1 = (n+ 1)2.

We conclude by induction that 2n > n2 for all integers n ≥ 5.

Occasionally, it is desirable to strengthen the hypotheses of the Principle of Ordinary Induction

in order to simplify proofs defined for induction. Currently, we may view induction as a property of

falling dominoes: (a.) if the n0th domino falls and (b.) the nth domino falling causes the (n+1)th

domino to fall, then as the n0th domino falls, all consecutive dominoes after it will fall. But suppose

that we could knock down all dominoes from the n0th to the nth domino: this would provide even

more power with which to knock down the (n+ 1)th domino! We introduce this as the following.
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Definition 0.4.7 (Principle of Complete Induction). Given any integer n0, consider any open

sentence P (n) defined for all integers n ≥ n0. We may define the following criteria.

(a.) We have that P (n0) is a true statement.

(b.) If P (k) is a true statement for each integer n0 ≤ k ≤ n, then P (n+ 1) is a true statement.

Provided that both of these statements are true, it follows that P (n) is true for all integers n ≥ n0.

Even though the criteria of the Principle of Complete Induction ostensibly appear to be much

stronger than the Principle of Ordinary Induction, the two principles are in fact materially equivalent

(see Exercise 0.6.23). Last, we obtain another crucial tool that is ubiquitous in mathematics.

Theorem 0.4.8 (Well-Ordering Principle). Every nonempty set of non-negative integers admits a

smallest element with respect to the total order ≤ on the real numbers. Put another way, if S ⊆ Z≥0

is a nonempty set, then there exists an element s0 ∈ S such that s0 ≤ s for all elements s ∈ S.

Proof. We will establish the contrapositive, i.e., we will prove that if S ⊆ Z≥0 has the property that

for every element s ∈ S, there exists an element s0 ∈ S such that s0 < s, then S must be empty.

Let P (n) be the statement that n /∈ S. We claim that P (n) holds for all integers n ≥ 0. We proceed

by the Principle of Complete Induction. Observe that if 0 ∈ S, then there exists an element s0 ∈ S

such that s0 < 0. But this is not possible because S consists of non-negative integers. Consequently,

we must have that 0 /∈ S, hence P (0) is true. We will assume according to the Principle of Complete

Induction that P (k) is true for each integer 1 ≤ k ≤ n. By definition of P (k), this means that k /∈ S

for any integer 1 ≤ k ≤ n. Observe that if n+ 1 ∈ S, then there exists an integer s0 ∈ S such that

1 ≤ s0 ≤ n. But this is not possible by the hypothesis of our induction. Consequently, we must have

that n+1 /∈ S, i.e., P (n+1) is a true statement whenever P (k) is a true statement for each integer

1 ≤ k ≤ n. By the Principle of Complete Mathematical Induction, our proof is complete.

Conversely, the Well-Ordering Principle implies the Principle of Ordinary Induction, hence this

theorem is materially equivalent to both ordinary induction and complete induction (see Exercise

0.6.24). Combined, the Principle of Ordinary Induction, the Principle of Complete Induction, and

the Well-Ordering Principle constitute the triumvirate of the Principle of Mathematical Induction.

Before we conclude this section, we provide an example using the Well-Ordering Principle.

Example 0.4.9. Prove that every integer is of the form 2ab for some integers a ≥ 0 and b odd.

Proof. Certainly, every odd integer n is of the form n = 2ab since we may take a = 0 and b = n in

this case. Conversely, if n is even, then there exists an integer k such that n = 2k. Observe that if

k is odd, then our proof is complete since we may take a = 1 and b = k in this case. Otherwise, we

must have that k is even, hence we may repeat the same argument for k. Continuing in this manner

yields a strictly decreasing sequence |n| > |k| > · · · > |b| of a positive integers that must eventually

terminate in some odd integer b by the Well-Ordering Principle. We conclude that n = 2ab.

Remark 0.4.10. Canonically, any proof with non-negative integers that invokes the Well-Ordering

Principle to ensure the termination of a repeating process is considered a proof by infinite descent

(or Fermat’s Method of Descent). Crucially, the Well-Ordering Principle ensures there is no infinite

strictly decreasing sequence of non-negative integers, hence every process involving non-negative

integers that ostensibly results in “infinite descent” must eventually terminate. Classically, such a

proof was structured as a proof by contradiction, assuming that an infinite process were possible.

https://en.wikipedia.org/wiki/Proof_by_infinite_descent
https://en.wikipedia.org/wiki/Pierre_de_Fermat
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0.4.2 Divisibility Properties of Integers

We say that a nonzero integer a divides an integer b if there exists an integer q such that b = aq.

We will write a | b in this case, and we will typically say that b is divisible by a. Conversely, the

divisors of b are the nonzero integers a that divide b.We are already familiar with this notion from

Section 0.1.5, but for illustrative purposes, we note that the integers 1, 2, 3, 4, 6, and 12 divide 12

(i.e., the divisors of 12 are the integers 1, 2, 3, 4, 6, and 12) because 12 = 1 · 12 = 2 · 6 = 3 · 4. We

say that an integer p ≥ 2 is prime if its only positive divisors are 1 and p. Conversely, an integer

n ≥ 2 that admits positive divisors other than 1 and n is composite. Quite useful is the following

property of the divisors of composite integers that provides a characterization of compositeness.

Theorem 0.4.11 (Factorization Criterion for Composite Integers). Given any integer n ≥ 2, we

have that n is composite if and only if n = ab for some integers a and b such that 2 ≤ a, b ≤ n− 1.

Proof. Observe that if n ≥ 2 is composite, then by definition, we may write n = ab for some positive

integers a and b such that a is neither 1 nor n. Considering that b ≥ 1, it follows that n = ab ≥ a

so that 2 ≤ a ≤ n− 1 by hypothesis that a is neither 1 nor n. Conversely, if n ≥ 2 admits positive

integers a and b such that n = ab and 2 ≤ a ≤ n− 1, then n must be composite by definition.

We will soon see that primes form the “building blocks” for all integers. Explicitly, every integer

n ≥ 2 can be written as a product of primes. We refer to such an expression of an integer as a product

of its prime factors as the prime factorization of the integer. Observe that 12 = 4 · 3 = 22 · 3 is

the prime factorization of 12 and 30 = 2 ·15 = 2 ·3 ·5 is the prime factorization of 30. Before we are

able to prove that every integer n ≥ 2 admits a unique prime factorization, we set out to develop

some basic tools for understanding divisibility of integers. Our first task is to verify the following.

Proposition 0.4.12 (Properties of Divisibility of Integers). Consider any nonzero integers a and

b and any integers c and d. Each of the following properties of divisibility of integers holds.

1.) (Product Property) If a | c or a | d, then a | cd.

2.) (Transitive Property) If a | b and b | c, then a | c.

3.) (Homogeneity Property) If a | c and b | d, then ab | cd.

4.) (Linearity Property) If a | c and a | d, then a | (cx+ dy) for any integers x and y.

Proof. We may prove each statement in turn directly by appealing to the definition of divisibility.

1.) We may assume without loss of generality that a | c since cd = dc. By definition, if a divides c,

then there exists an integer q such that c = aq. Consequently, we have that cd = (aq)d = a(dq).

Considering that dq is an integer because d and q are integers, we conclude that a divides cd.

2.) By definition, if a | b and b | c, then b = aq and c = br for some integers q and r. We conclude

by substitution that c = br = (aq)r = a(qr) is divisible by a because qr is an integer.

3.) By definition, if a | c and b | d, then c = aq and d = br for some integers q and r. We conclude

by substitution that cd = (aq)(br) = ab(qr) is divisible by ab because qr is an integer.
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4.) By definition, if a | c and a | d, then c = aq and d = ar for some integers q and r so that

cx+ dy = (aq)x+ (ar)y = a(qx) + a(ry) = a(qx+ ry)

for any integers x and y. Considering that qx+ ry is an integer, we find that a | (cx+dy).

Proposition 0.4.13 (Divisibility and Absolute Value). Consider any nonzero integers a and b. Each

of the following properties relating divisibility of integers and the absolute value function holds.

1.) (Divisibility Decreases Absolute Value) If a | b, then |a| ≤ |b|.

2.) (Divisibility Detects Absolute Value) If a | b and b | a, then |a| = |b|.

Proof. We will prove the first statement; the second statement then follows from the first statement

by noting that if a | b and b | a, then |a| ≤ |b| and |b| ≤ |a| so that equality holds. By definition, if

a | b, then there exists an integer q such that b = aq. Even more, by assumption that b is nonzero,

we must have that |q| ≥ 1. Consequently, we conclude that |b| = |aq| = |a||q| ≥ |a|, as desired.

Remark 0.4.14. Each of the properties of divisibility of integers we have discussed thus far can be

phrased in terms of congruence modulo some nonzero integers a and b. We remind the reader that

a pair of integers c and d are congruent modulo a nonzero integer n if and only if n divides d− c if

and only if n | (d− c). Conventionally, if c and d are congruent modulo n, we write d ≡ c (mod n).

1.) (Product Property) If c ≡ 0 (mod a) or d ≡ 0 (mod a), then cd ≡ 0 (mod a).

2.) (Transitive Property) If b ≡ 0 (mod a) and c ≡ 0 (mod b), then c ≡ 0 (mod a).

3.) (Homogeneity Property) If c ≡ 0 (mod a) and d ≡ 0 (mod b), then cd ≡ 0 (mod ab).

4.) (Linearity Property) If c ≡ 0 (mod a) and d ≡ 0 (mod a), then cx+ dy ≡ 0 (mod a).

5.) (Divisibility Decreases Absolute Value) If b ≡ 0 (mod a), then |a| ≤ |b|.

6.) (Divisibility Detects Absolute Value) If b ≡ 0 (mod a) and a ≡ 0 (mod b), then |a| = |b|.

Even with this very basic notion of divisibility, there are many interesting examples to consider.

Example 0.4.15. Prove that if a, b, c are integers, a and b nonzero, a2 | b, and b3 | c, then a6 | c.

Proof. By definition, if a2 | b, then there exists an integer q such that b = a2q. Likewise, if b3 | c, then
there exists an integer r such that c = b3r. Considering that b = a2q, we find that b3 = (a2q)3 = a6q3

so that c = b3r = (a6q3)r = a6(q3r). We conclude that a6 | c because q3r is an integer.

Example 0.4.16. Prove that for any integers a and b, if 2 | ab, then 2 | a or 2 | b.

Proof. We will prove the contrapositive. We may assume to this end that 2 does not divide either

a or b. Consequently, the integers a and b must be odd, hence there exist integers k and ℓ such that

a = 2k + 1 and b = 2ℓ+ 1 so that ab = (2k + 1)(2ℓ+ 1) = 4kℓ+ 2k + 2ℓ+ 1 = 2(2kℓ+ k + ℓ) + 1.

Considering that 2kℓ+ k + ℓ is an integer, we conclude that 2 does not divide ab.
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Remark 0.4.17. Even without the notion of divisibility of integers, we could have established the

result of the preceding example using the notion of parity of integers: indeed, we claim that if ab is

even for some integers a and b, then a or b must be even. Compare with the third line of the proof.

Example 0.4.18. Prove that if n is an integer such that 7 | 4n, then 7 | n.

Proof. By definition, if 7 | 4n, then there exists an integer q such that 4n = 7q. Considering that

4n is even, we must have that q is even; otherwise, if q were odd, then q = 2k + 1 for some integer

k so that 4n = 7q = 7(2k + 1) = 2(7k + 3) + 1 is odd — a contradiction. Consequently, there

exists an integer k such that q = 2k and 4n = 7q = 14k. Cancelling one factor of 2 from each

side of this identity yields that 2n = 7k so that 2 | 7k. By Example 0.4.16, we conclude that 2 | k.
Consequently, there exists an integer ℓ such that k = 2ℓ and q = 2k = 4ℓ. Considering that 4n = 7q,

we find that 4n = 7(4ℓ). Cancelling one factor of 4 from each side yields n = 7ℓ so that 7 | n.

Remark 0.4.19. Examples 0.4.16 and 0.4.18 can be generalized to demonstrate that for any integers

a and b and any prime p, we have that p | ab if and only if p | a or p | b (see Exercise 0.6.26).

Example 0.4.20. Prove that if n if an integer such that 2 | (n2 + 3), then 4 | (n2 + 3).

Proof. By definition, if 2 | (n2 + 3), then there exists an integer k such that n2 + 3 = 2k, hence we

have that n2 = 2k − 3 = 2(k − 2) + 1 is odd so that n is odd. Consequently, we have that

n2 + 3 = (2ℓ+ 1)2 + 3 = (4ℓ2 + 4ℓ+ 1) + 3 = 4(ℓ2 + ℓ+ 1)

for some integer ℓ. Considering that ℓ2 + ℓ+ 1 is an integer, we conclude that 4 | (n2 + 3).

Given any nonzero integers a and b, we say that a nonzero integer c is a common divisor of a

and b if and only if c | a and c | b, i.e., c divides a and c divides b.We distinguish among all common

divisors of a and b the unique greatest common divisor d = gcd(a, b) of a and b satisfying that

(a.) d | a and d | b, i.e., d is a common divisor of a and b and

(b.) if c is any common divisor of a and b, then c | d.
Consequently, gcd(a, b) is the “largest” common divisor of a and b with respect to divisibility.

Example 0.4.21. Consider the integers a = 12 and b = 30. By writing down the prime factoriza-

tions of a and b, their greatest common divisor can be easily determined. Observe that 12 = 22 · 3
and 30 = 2·3·5. Consequently, the greatest common divisor of 12 and 30 is 2·3, i.e., gcd(12, 30) = 6.

Example 0.4.22. Consider the integers a = 24 and b = 16. By writing down the prime factoriza-

tions of a and b, their greatest common divisor can easily be read off. Observe that 24 = 4 ·6 = 23 ·3
and 16 = 42 = 24. Consequently, the greatest common divisor of 24 and 16 is 23, i.e., gcd(24, 16) = 8.

Generally, for any nonzero integers a and b, we may determine gcd(a, b) from the prime factor-

izations of a and b as in Examples 0.4.21 and 0.4.22 (see Exercise 0.6.32). Certainly, it is possible

that gcd(a, b) = 1. One immediate instance of this is that both a and b are prime. Generalizing this

notion, we say that positive integers a and b are relatively prime if and only if gcd(a, b) = 1.

Example 0.4.23. Observe that 2 and 3 are relatively prime because they are distinct primes, hence

they have no prime factors in common. Consequently, we have that gcd(2, 3) = 1.

Example 0.4.24. We claim that 30 and 77 are relatively prime. Observe that the prime factor-

ization of 30 is 30 = 2 · 3 · 5, and the prime factorization of 77 is 77 = 7 · 11. Because they have no

prime factors in common, we conclude that gcd(30, 77) = 1, hence 30 and 77 are relatively prime.
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0.4.3 Division Algorithm

Even as early as grade school, we learn the process of dividing an integer by a nonzero integer. Each

time we divide an integer b by a nonzero integer a, we obtain an integer q and a non-negative integer

r that is strictly smaller than |a| such that b = qa+ r. Explicitly, we say that b is the dividend; a

is the divisor; q is the quotient; and r is the remainder of the division. Our aim throughout this

section is to establish that this process is well-founded, i.e., the process of division of an integer b by

a nonzero integer a unambiguously results in integers q and r such that b = qa+ r and 0 ≤ r < |a|.
We will also establish an algorithm that will allow us to efficiently find the integers q and r.

Example 0.4.25. Consider the case that b = 11 and a = 2. One can easily see that 11 = 5 · 2 + 1,

hence the integers q = 5 and r = 1 satisfy the requirements that b = qa+ r and 0 ≤ r < |a|.

Example 0.4.26. Consider the case that b = −17 and a = 6. We find that −17 = −3 · 6+1, hence

the integers q = −3 and r = 1 satisfy the requirements that b = qa+ r and 0 ≤ r < |a|.

Example 0.4.27. Consider the case that b = −8 and a = −9. We find that −8 = 1(−9)+1, hence

the integers q = 1 and r = 1 satisfy the requirements that b = qa+ r and 0 ≤ r < |a|.

Each of the previous examples can be completed by noticing that the integer multiples of b are

completely determined by b. Consequently, we may consider all integer multiples of b that do not

exceed a, i.e., we may consider the collection R(a, b) = {b − qa | q is an integer and b ≥ qa}. Our

idea is to find the largest (in absolute value) integer q such that b ≥ qa; then, the difference b− qa

must be non-negative (by assumption) and strictly smaller than b (otherwise, we could increase q).

Using this intuition as our guide, let us return to find R(a, b) in our previous examples.

Example 0.4.28. By definition, we have that R(2, 11) = {11 − 2q | q is an integer and 11 ≥ 2q}.
Observe that 11 ≥ 2q if and only if q ≤ 11/2, hence the only valid values of q in R(11, 2) are q ≤ 5.

Consequently, we have that −2q ≥ −10 so that 11− 2q ≥ 1. By consecutively decreasing the value

of q ≤ 5, we find that R(2, 11) = {1, 3, 5, 7, . . . } consists of all odd positive integers.

Example 0.4.29. We have that R(6,−17) = {−17− 6q | q is an integer and −17 ≥ 6q}. Observe

that −17 ≥ 6q if and only if q ≤ −17/6, hence the only valid values of q in R(−17, 6) are q ≤ −3.

Consequently, we conclude that R(6,−17) = {−17− 6q | q ≤ −3 is an integer} = {1, 7, 13, 19, . . . }.

Example 0.4.30. We have that R(−9,−8) = {−8 + 9q | q is an integer and −8 ≥ −9q}. Observe

that −8 ≥ −9q if and only if q ≥ 8/9, hence the only valid values of q in R(−8,−9) are q ≥ 1.

Consequently, we conclude that R(−9,−8) = {−8 + 9q | q ≥ 1 is an integer} = {1, 10, 19, 28, . . . }.

Generalizing the collection R(a, b) and using the Well-Ordering Principle yields the following.

Theorem 0.4.31 (Division Algorithm). Given any integer b and any nonzero integer a, there exist

unique integers q and r such that b = qa+ r and 0 ≤ r < |a|.

Proof. Consider the collection R(a, b) = {b− qa | q is an integer and b ≥ qa}. By definition, R(a, b)

consists of non-negative integers. Observe that if b ≥ 0, then R(a, b) is nonempty because we may

take q = 0 to demonstrate that R(a, b) contains b. On the other hand, if b ≤ −1, then if a ≥ 1,

then R(a, b) is yet again nonempty because we may take q = b − 1 to demonstrate that R(a, b)

contains b − qa since b ≥ b − 1 ≥ (b − 1)a = qa. Last, if b ≤ −1 and a ≤ −1, then R(a, b) is once

more nonempty because we may take q = −(b − 1) to demonstrate that R(a, b) contains b − qa
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since b ≥ b− 1 ≥ −(b− 1)a = qa. Ultimately, this shows that R(a, b) is a nonempty subset of non-

negative integers, hence the Well-Ordering Principle implies that there exists a smallest element

r(a, b) = b − qa with respect to the total order ≤ on the real numbers. Rearranging this identity

with r = r(a, b) yields that b = qa+ r. Considering that r ≥ 0, it suffices to see that r < |a|. On the

contrary, suppose that b− qa = r ≥ |a|. Observe that if a ≥ 1, then |a| = a yields that b− qa ≥ a

and b− (q+ 1)a ≥ 0. Considering that b− (q+ 1)a is less than the least element r(a, b) = b− qa of

R(a, b), we obtain a contradiction. Likewise, if a ≤ −1, then |a| = −a yields that b− qa ≥ −a and

b− (q− 1)a ≥ 0. Considering that a ≤ −1, we find that b− (q− 1)a = b− qa+ a < b− qa = r(a, b).

Once again, this contradicts the fact that r(a, b) is the smallest element of R(a, b). Consequently,

we conclude that there exist integers q and r such that b = qa+ r and 0 ≤ r < |a|.
We must prove next that these integers are unique. We accomplish this by assuming that there

exist integers q′ and r′ such that b = q′a + r′ and 0 ≤ r′ < |a|. Considering that b = qa + r by the

previous paragraph, we conclude that qa + r = q′a + r′ so that a(q − q′) = r′ − r. Observe that if

q′ = q, then it is clear that r′ = r, hence our proof is complete. Consequently, we may assume on

the contrary that q − q′ is nonzero, hence we must have that |a| ≤ |r′ − r|. Observe that if r′ > r,

then |r′ − r| = r′ − r implies that r′ ≥ |a| + r ≥ |a| — a contradiction. Likewise, if r′ < r, then

|r′−r| = r−r′ implies that r ≥ |a|+r′ ≥ |a| — a contradiction. Either way, we conclude that r′ = r

so that a(q − q′) = 0. By hypothesis that a is nonzero, we conclude that q − q′ = 0 or q′ = q.

We have therefore rigorously verified the non-trivial method of division that we have taken for

granted since grade school! We remind the reader at this point that if b = qa + r for the unique

integers q and r such that 0 ≤ r < |a|, then we refer to the integer b as the dividend; the integer

a as the divisor; the integer q as the quotient of b modulo a; and the integer r as the remainder

of b modulo a. Crucially, the remainder of b modulo a is non-negative and strictly smaller than the

absolute value of the divisor. We note that all though the Division Algorithm does not have explicit

steps to compute the quotient or remainder of an integer b modulo a nonzero integer b, the proof

is constructive in the sense that the unique integers q and 0 ≤ r < |a| can be deduced from the

collection R(a, b) = {b− qa | q is an integer and b ≥ qa}, as we have done in previous examples.

One of the most fruitful applications of the Division Algorithm is the generalization of the proof

by cases technique for divisibility proofs involving any positive integer n ≥ 2. Explicitly, if we wish

to prove that a positive integer a ≥ 2 divides an integer b, then by the Division Algorithm, we may

write b = qa+ r for some integers q and r such that 0 ≤ r < |a|. Consequently, it suffices to check

each of the |a| cases that 0 ≤ r ≤ |a| − 1. We have already tacitly used this kind of proof by cases:

in fact, every integer is either even or odd because the remainder an integer modulo 2 is either 0 or

1. Concretely, we illustrate this more general idea for divisibility proofs involving the integer 3.

Example 0.4.32. Prove that if n is an integer, then 3 | (2n2 + 1) if and only if 3 ∤ n.

Proof. We will assume first that 3 ∤ n. By the Division Algorithm, there are two cases.

1.) Observe that if n = 3q + 1 for some integer q, then

2n2 + 1 = 2(3q + 1)2 + 1 = 2(9q2 + 6q + 1) + 1. = 3(6q2 + 4q + 1).

Considering that 6q2 + 4q + 1 is an integer, we conclude that 3 | (2n2 + 1).
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2.) Observe that if n = 3q + 2 for some integer q, then

2n2 + 1 = 2(3q + 2)2 + 1 = 2(9q2 + 12q + 4) + 1. = 3(6q2 + 8q + 3).

Considering that 6q2 + 8q + 3 is an integer, we conclude that 3 | (2n2 + 1).

Conversely, we will prove the contrapositive. We may assume to this end that 3 | n. By definition

of divides, there exists an integer q such that n = 3q. Consequently, we have that

2n2 + 1 = 2(3q)2 + 1 = 18q2 + 1 = 3(6q2) + 1.

Certainly, this is not divisible by 3 because 1 is not divisible by 3, hence 3 ∤ (2n2 + 1).

Example 0.4.33. Prove that if n is an odd integer such that 3 ∤ n, then 24 | (n2 − 1).

Proof. We will assume that n is an odd integer. By definition of an odd integer, there exists an

integer k such that n = 2k + 1. By the Division Algorithm, if 3 ∤ n, then there are two cases.

1.) Observe that if n = 3q + 1 for some integer q, then 2k + 1 = 3q + 1 yields that 2k = 3q. By

Example 0.4.16, we must have that 2 | q so that q = 2ℓ for some integer ℓ, n = 6ℓ+ 1, and

n2 − 1 = (6ℓ+ 1)2 − 1 = (36ℓ2 + 12ℓ+ 1)− 1 = 12(3ℓ2 + ℓ).

We claim that ℓ is even. On the contrary, if ℓ were odd, then we would have that ℓ = 2m+ 1

for some integer m. Combining this identity with our previous identity that n = 6ℓ+1 yields

that n = 6(2m+1)+1 = 12m+2 = 2(6m+1) — a contradiction. Consequently, there exists

an integer m such that ℓ = 2m and n2 − 1 = 12[3(2m)2 + 2m] = 24(6m2 +m).

2.) Observe that if n = 3q + 2 for some integer q, then 2k + 1 = 3q + 2 yields that 2k = 3q + 1.

Consequently, we must have that q is odd; otherwise, if it were the case that q = 2ℓ for some

integer ℓ, then 2k = 3(2ℓ) + 1 = 2(3ℓ) + 1 is odd — a contradiction. We conclude that there

exists an integer ℓ such that q = 2ℓ+1 and n = 3q+2 = 3(2ℓ+1)+ 2 = 6ℓ+5. Observe that

n2 − 1 = (6ℓ+ 5)2 − 1 = (36ℓ2 + 60ℓ+ 25)− 1 = 12(3ℓ2 + 5ℓ+ 2).

We claim that 3ℓ2 + 5ℓ+ 2 is even. Certainly, this holds if ℓ is even because the sum of three

even integers is even; on the other hand, if ℓ = 2m+ 1 for some integer m, then

3ℓ2 +5ℓ+2 = 3(2m+1)2 +5(2m+1)+ 2 = 3(4m2 +4m+1)+ 10m+7 = 2(6m2 +11m+5).

Either way, we conclude that 2 | (3ℓ2 + 5ℓ+ 2) so that 24 | (n2 − 1), as desired.

Before we state our next theorem, we remind the reader that if a and b are any nonzero integers

and c is any nonzero integer such that c | a and c | b, then we say that c is a common divisor of a

and b; the greatest common divisor of a and b is the unique integer d = gcd(a, b) such that

(a.) d | a and d | b, i.e., d is a common divisor of a and b and

(b.) if c is any common divisor of a and b, then c | d.



0.4. PROOFS IN THE WILD 79

We say that a pair of nonzero integers a and b are relatively prime if and only if gcd(a, b) = 1. Our

next theorem states that gcd(a, b) can be realized as an integer-linear combination of a and b.

Theorem 0.4.34 (Bézout’s Identity). Given any nonzero integers a and b, there exist integers x

and y such that gcd(a, b) = ax+ by. Even more, gcd(a, b) divides av + bw for all integers v and w.

Proof. Consider the set L(a, b) = {ax+ by | x, y are integers and ax+ by ≥ 1} of positive Z-linear
combinations of some nonzero integers a and b. One of the integers a+ b, a− b, −a+ b, or −a− b

lies in L(a, b), hence L(a, b) is nonempty. By the Well-Ordering Principle, there exists a smallest

element ℓ(a, b) = ax+ by with respect to the total order ≤. We will show that gcd(a, b) = ℓ(a, b).

By the Division Algorithm, there exist unique integers qa and ra such that a = qaℓ(a, b)+ ra and

0 ≤ ra < ℓ(a, b). By rearranging this identity and using that ℓ(a, b) = ax+ by, we find that

ra = a− qaℓ(a, b) = a− qa(ax+ by) = (1− qax)a− (qay)b.

Observe that if ra were nonzero, then it would lie in L(a, b) and satisfy 1 ≤ ra < ℓ(a, b), but this is

impossible because ℓ(a, b) is the smallest element of L(a, b). Consequently, it must be the case that

ra = 0. Likewise, the Division Algorithm with b in place of a yields that ℓ(a, b) divides b. Ultimately,

this proves that ℓ(a, b) | a and ℓ(a, b) | b, hence ℓ(a, b) is a common divisor of both a and b.

Consider any other common divisor c of a and b. We must prove that c | ℓ(a, b). By assumption,

there exist integers qa and qb such that a = qac and b = qbc, from which it follows that

ℓ(a, b) = ax+ by = (qac)x+ (qbc)y = (qax+ qby)c.

By definition, this implies that c divides ℓ(a, b) so that gcd(a, b) = ℓ(a, b) = ax+ by, as desired.

Last, by the previous two paragraphs, there exist integers qa and qb such that a = qa gcd(a, b) and

b = qb gcd(a, b), hence gcd(a, b) divides av+ bw for any integers v and w by Proposition 0.4.12.

Corollary 0.4.35 (Uniqueness of GCD). Greatest common divisors of nonzero integers are unique.

Proof. By the proof of Bézout’s Identity, gcd(a, b) is unique for any nonzero integers a and b since it

is by construction the smallest (w.r.t. the total order ≤) positive integer satisfying a property.

Corollary 0.4.36 (Characterization of Relatively Prime Integers). Given any nonzero integers a

and b, we have that a and b are relatively prime if and only if ax+ by = 1 for some integers x, y.

Even though Bézout’s Identity guarantees that the existence of integers x and y such that

gcd(a, b) = ax + by for any pair of nonzero integers a and b, neither the statement of this fact nor

its proof provides any tools for explicitly finding these integers x and y.We conclude this section by

constructing a step-by-step process for producing the integers x and y for which gcd(a, b) = ax+by.

Contrary to the Division Algorithm (that is not in fact an algorithm after all), we will obtain a

programmable, reproducible algorithm for this procedure that can be readily coded for computing.

Example 0.4.37. Consider the case that a = 24 and b = 16. We know already that gcd(a, b) = 8,

and it is not difficult to see that 8 = 24 · 1 + 16(−1); however, this fact can also be seen as follows:

by the Division Algorithm, we have that 24 = 1 · 16 + 8, hence we have that 8 = 24 · 1 + 16(−1).
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Example 0.4.38. Consider the case that a = 110 and b = 24. Observe that the unique prime

factorizations of 110 and 24 are 110 = 10 · 11 = 2 · 5 · 11 and 24 = 23 · 3, respectively. By Exercise

0.6.32, it follows that gcd(110, 24) = 2. By successively implementing the Division Algorithm, we

may find the integers x and y such that 110x+ 24y = 2, as guaranteed to us by Bézout’s Identity.

Explicitly, we begin by running the Division Algorithm with a = 110 and b = 24 to find the unique

integers q1 and 0 ≤ r1 < 24 such that 110 = 24q1+ r1; then, we repeat the Division Algorithm with

24 and r1 to produce the unique integers q2 and 0 ≤ r2 < r1 such that 24 = q2r1+ r2. Continuing in

this manner produces a strictly decreasing sequence r1 > r2 > · · · > rn of non-negative integers at

the nth step. Bearing in mind the Well-Ordering Principle, this sequence must have a least element,

hence the process must eventually terminate. Putting this process to the test, we find that

110 = 4 · 24 + 14,

24 = 1 · 14 + 10,

14 = 1 · 10 + 4, and

10 = 2 · 4 + 2.

We determine the integers x and y such that 110x+ 24y = 2 by unravelling this process in reverse.

Explicitly, our last identity gives that 10−2 ·4 = 2; the identity before that gives that 4 = 14−1 ·10,
hence we have that −2 · 14 + 3 · 10 = 10 − 2 · (14 − 1 · 10) = 2; the identity before 14 = 1 · 10 + 4

gives that 10 = 24− 1 · 14, hence we have that 3 · 24− 5 · 14 = −2 · 14 + 3 · (24− 1 · 14) = 2; and at

last, the identity before 24 = 1 · 14 + 10 gives that 14 = 110− 4 · 24, hence we have that

110(−5) + 24(23) = 3 · 24− 5 · (110− 4 · 24) = 2.

Algorithm 0.4.39 (Euclidean Algorithm). Consider any nonzero integers a and b such that a ≥ b.

We may produce integers x and y such that gcd(a, b) = ax+ by according to the following.

1.) Use the Division Algorithm to find integers q1 and r1 such that a = q1b+ r1 and 0 ≤ r1 < |b|.

2.) Use the Division Algorithm to find integers q2 and r2 such that b = q2r1 + r2 and 0 ≤ r2 < r1.

3.) Use the Division Algorithm to find integers q3 and r3 such that r1 = q3r2+r3 and 0 ≤ r3 < r2.

4.) Continue in this manner until the remainder rn+1 divides rn. By the Well-Ordering Principle,

this must eventually occur, and moreover, it must occur in a finite number of steps.

5.) Use the fact that rn−1 = qn+1rn + rn+1 to express that rn+1 = rn−1 − qn+1rn.

6.) Use the fact that rn−2 = qnrn−1 + rn to express that rn = rn−2 − qnrn−1; then, use the fact

that rn+1 = rn−1 − qn+1rn to express that rn+1 = rn−1 − qn+1(rn−2 − qnrn−1) so that

rn+1 = (qnqn+1 + 1)rn−1 − qn+1rn−2.

7.) Continue in this manner to produce integers x and y such that rn+1 = ax+ by.

By Bézout’s Identity and Proposition 0.4.13, we must have that gcd(a, b) ≤ rn+1. Conversely,

because rn+1 divides rn by (4.), it must divide rk for all integers 1 ≤ k ≤ n by steps (5.) through

(7.) above. Consequently, by step (2.) above, we conclude that rn+1 must divide b, and by step (1.)

above, we conclude that rn+1 must divide a. Ultimately, this shows that rn+1 is a common divisor of

a and b, hence we must have that rn+1 divides gcd(a, b); in particular, we have that rn+1 = gcd(a, b).
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0.4.4 Congruence Modulo n, Revisited

We will assume until further notice that n is a fixed nonzero integer. By the Division Algorithm,

for every integer a, there exist unique integers qa and ra such that a = qan + ra and 0 ≤ ra < |n|.
Considering that the remainder ra of the division of a by n is always a non-negative integer, we may

assume without loss of generality that n is a positive integer. We will refer to the unique integer ra
as the remainder of a modulo n. Our naming convention is justified by the next proposition.

Proposition 0.4.40. We have that Rn = {(a, r) | a = qn+ r for some integer q} is an equivalence

relation on the set Z of integers with distinct equivalence classes {qn + r | q ∈ Z} for each integer

0 ≤ r ≤ n− 1. Explicitly, the equivalence class of a modulo n is given by [a] = {qn+ ra | q ∈ Z}.

Proof. By definition, we must justify that Rn is (1.) reflexive, (2.) symmetric, and (3.) transitive.

(1.) Observe that (a, a) ∈ Rn for any integer a ∈ Z since we have that a = 0 · n+ a.

(2.) We must demonstrate that if (a, r) ∈ Rn, then (r, a) ∈ Rn. By definition of Rn, if we assume

that (a, r) ∈ Rn, then there exists an integer q such that a = qn+r. Consequently, the integer

−q satisfies that r = −qn+ a = (−q)n+ a, and we conclude that (r, a) ∈ Rn.

(3.) Last, we will assume that (a, r) ∈ Rn and (r, s) ∈ Rn. By definition of Rn, there exist integers

q and q′ such that a = qn+ r and r = q′n+ s. Consequently, we have that (a, s) ∈ Rn because

a = qn+ r = qn+ (q′n+ s) = (q + q′)n+ s,

and the sum q + q′ of the two integers q and q′ is itself an integer.

We have therefore established that Rn is an equivalence relation on Z; the equivalence class of an

arbitrary integer a modulo Rn is defined by [a] = {r ∈ Z | a = qn + r for some integer q}. By the

Division Algorithm, for every integer a, there exist unique integers qa and ra such that a = qan+ ra
and 0 ≤ ra ≤ n− 1. Consequently, we have that ra ∈ [a]. By Proposition 0.1.50, we conclude that

[a] = [ra] = {r ∈ Z | r = −qn+ ra for some integer q ∈ Z} = {qn+ ra | q ∈ Z}, as desired.

Example 0.4.41. Observe that R2 is an equivalence relation on Z whose distinct equivalence classes

consist of the even integers E = {2q | q ∈ Z} and the odd integers O = {2q + 1 | q ∈ Z}.
Example 0.4.42. Observe that R3 is an equivalence relation on Z whose distinct equivalence classes

consist of the integer multiples of 3, [0] = {3q | q ∈ Z}, the integers that are congruent to 1 modulo

3, [1] = {3q+ 1 | q ∈ Z}, and the integers that are congruent to 2 modulo 3, [2] = {3q+ 2 | q ∈ Z}.
We will henceforth refer to the set Zn of equivalence classes of Z modulo Rn as the equivalence

classes of Zmodulo n. By Proposition 0.4.40, we find that Zn consists of exactly n distinct elements.

Even more, for any two integers a and b, we have that [a] = [b] if and only if the remainder of a

modulo n is equal to the remainder of b modulo n if and only if there exist unique integers qa, qb,

and r such that a = qan+ r and b = qb + r and 0 ≤ r ≤ n− 1 if and only if b− a = (qb − qa)n. Put

another way, two integers lie in the same equivalence class modulo n if and only if their difference is

divisible by n. Generally, an equivalence relation is merely a set whose elements need not possess any

arithmetic; however, the above observation allows us to deduce that Zn (i.e., the set of equivalence

classes of Z modulo n) admits a notion of addition and multiplication, as we demonstrate next.
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Theorem 0.4.43 (Arithmetic Modulo n). Consider the set Zn of the integers modulo n.

1.) Given any integers a and b, the addition [a] + [b] = [a+ b] is a well-defined binary operation.

Even more, this addition is associative, commutative, and [a] + [0] = [a] = [0] + [a].

2.) Every equivalence class [a] of the integers modulo n admits an additive inverse [−a].

3.) Given any integers a and b, the multiplication [a][b] = [ab] is a well-defined binary operation.

Even more, this product is associative, commutative, distributive, and [a][1] = [a] = [1][a].

4.) Given any integer a, the set [a] admits a multiplicative inverse if and only if gcd(a, n) = 1.

Proof. (1.) We must demonstrate that if [a1] = [a2] and [b1] = [b2], then [a1 + b1] = [a2 + b2]. By

the exposition preceding the proposition, if we assume that [a1] = [a2] and [b1] = [b2], then there

exist integers qa and qb such that a1 − a2 = qan and b1 − b2 = qbn. Consequently, we have that

(a1 + b1)− (a2 + b2) = (a1 − a2) + (b1 − b2) = qan+ qbn = (qa + qb)n,

from which we conclude that [a1 + b1] = [a2 + b2]. Considering that integer addition is associative

and commutative, our addition defined here is associative and commutative.

(3.) We must demonstrate that if [a1] = [a2] and [b1] = [b2], then [a1b1] = [a2b2]. By the

exposition preceding the proposition statement, if we assume that [a1] = [a2] and [b1] = [b2], then

there exist integers qa and qb such that a1− a2 = qan and b1− b2 = qbn. Consequently, we have that

a1b1 − a2b2 = a1b1 − a1b2 + a1b2 − a2b2 = a1(b1 − b2) + b2(a1 − a2) = qba1n+ qab2n = (qba1 + qab2)n,

from which we conclude that [a1b1] = [a2b2]. Considering that integer multiplication is associative

and commutative, our multiplication defined here is associative and commutative. Even more, this

multiplication is distributive because the first and third parts of the proposition that we have proved

thus far establish that [a]([b] + [c]) = [a][b+ c] = [ab+ ac] = [ab] + [ac] = [a][b] + [a][c].

(4.) By definition of this product, the equivalence class [a] admits a multiplicative inverse [b] if

and only if [a][b] = [1] if and only if [ab] = [1] if and only if ab−1 = qn for some integer q if and only

if ab − qn = 1 for some integer q if and only if gcd(a, n) = 1 by Bézout’s Identity. Consequently,

we find that [a] admits a multiplicative inverse if and only if gcd(a, n) = 1, as desired.

Combined, the operations of addition and multiplication on Zn form modular arithmetic.

Proposition 0.4.44 (Properties of Arithmetic Modulo n). Consider any nonzero integer n and

any integers a, b, c, and d. Each of the following properties of congruence modulo n holds.

1.) (Modular Addition) If b ≡ a (mod n) and d ≡ c (mod n), then b+ d ≡ a+ c (mod n).

2.) (Modular Multiplication) If b ≡ a (mod n) and d ≡ c (mod n), then bd ≡ ac (mod n).

Proof. We will assume that b ≡ a (mod n) and d ≡ c (mod n), i.e., b− a = nk and d− c = nℓ for

some integers k and ℓ. Observe that (b+d)− (a+ c) = (b−a)+ (d− c) = nk−nℓ = n(k− ℓ), hence

the fact that k − ℓ is an integer implies that n divides (b+ d)− (a+ c) and b+ d ≡ a+ c (mod n).

Likewise, we have that bd− ac = bd− bc+ bc− ac = b(d− c) + c(b− a) = bnℓ+ cnk = n(bℓ+ ck).

Considering that bℓ+ ck is an integer, it follows by definition that bd ≡ ac (mod n), as desired.
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0.4.5 Proofs Involving Sets, Set Operations, and Functions

Combined, the calculus of logic of Section 0.2 and the basic proof techniques of Section 0.3 allow us

to deduce further properties of sets and set operations. On their own, näıve set theory and formal

logic are two rich and interesting areas of mathematics, but their utility in the broader patchwork

of pure and applied mathematics and computer science makes them indelible tools in our toolkit.

Before we proceed to any new material, we provide first a reinterpretation of Section 0.1 in the

language of Section 0.2. We will assume to this end that X and Y are some (possibly empty) sets.

� We may view the set membership x ∈ X as the following statement.

M(x,X) : We have that x is an element of the set X.

Consequently, the negation x /∈ X of the set membership x ∈ X is the following statement.

¬M(x,X) : We have that x is not an element of the set X.

� We may view the subset containment X ⊆ Y as the following statement.

C(X, Y ) : For every element x ∈ X, we have that x ∈ Y.

Considering that any universally quantified statement can be viewed as a conditional state-

ment, we may view the subset containment X ⊆ Y as the following conditional statement.

C(X, Y ) : If x ∈ X, then x ∈ Y.

Consequently, the empty set ∅ is a subset of every set X: indeed, C(∅, X) is vacuously true!

Observe that the negation X ̸⊆ Y of the subset containment is an existence statement.

¬C(X, Y ) : There exists an element x ∈ X such that x /∈ Y.

� We may view the proper subset containment X ⊂ Y as the following statement.

C∗(X, Y ) : We have that X is a subset of Y and there exists an element y ∈ Y \X.

Consequently, the proper subset containment is a conjunctive statement.

� We may view the set equality X = Y as the following conjunctive statement.

E(X, Y ) : We have that X ⊆ Y and Y ⊆ X.

� Elements of either the set X or the Y define the set union X ∪ Y of X and Y.

X ∪ Y = {w | (w ∈ X) ∨ (w ∈ Y ) is true}

� Elements of both the set X and the set Y define the set intersection X ∩ Y of X and Y.

X ∩ Y = {w | (w ∈ X) ∧ (w ∈ Y ) is true}
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� Elements of the set Y but not the set X define the relative complement Y \X of X in Y.

Y \X = {w | (w ∈ Y ) ∧ (w /∈ X) is true}

� We may view the Cartesian product X × Y of the sets X and Y as the collection of all

ordered pairs (x, y) for which x is an element of X and y is an element of Y.

X × Y = {(x, y) | (x ∈ X) ∧ (y ∈ Y ) is true}

By using the above dictionary between set theory and logic, we can prove many facts about sets.

Example 0.4.45. Prove that for any sets X, Y,W such that X ⊆ W and Y ⊆ W, we have that

X \ Y = X ∩ (W \ Y ).

Proof. By the above definition of set equality, we must demonstrate that X \Y ⊆ X ∩ (W \Y ) and

X ∩ (W \ Y ) ⊆ X \ Y. By definition of X \ Y, if x ∈ X \ Y, then x ∈ X and x /∈ Y. By assumption

that X ⊆ W, we find that x ∈ W and x /∈ Y so that x ∈ X and x ∈ W \ Y. We conclude that

x ∈ X ∩ (W \Y ), from which it follows that X \Y ⊆ X ∩ (W \Y ). Conversely, if x ∈ X ∩ (W \Y ),

then x ∈ X and x ∈ W \ Y. By definition of W \ Y, we have that x ∈ W and x /∈ Y. We conclude

that x ∈ X \ Y since x ∈ X and x /∈ Y, from which it follows that X ∩ (W \ Y ) ⊆ X \ Y.

Example 0.4.46. Prove that for any sets X and Y, we have that X = (X ∩ Y ) ∪ (X \ Y ).

Proof. By the above definition of set equality, we must demonstrate that X ⊆ (X ∩ Y ) ∪ (X \ Y )

and (X ∩ Y ) ∪ (X \ Y ) ⊆ X. Given any element x ∈ X, either x ∈ Y or x /∈ Y by the Law of

Excluded Middle: if the former holds, then x ∈ X ∩ Y ; if the latter holds, then x ∈ X \ Y. Either
way, it follows that x ∈ (X ∩ Y ) ∪ (X \ Y ). Conversely, suppose that x ∈ (X ∩ Y ) ∪ (X \ Y ). Each

of the sets X ∩ Y and X \ Y is by definition a subset of X, hence we have that x ∈ X.

Example 0.4.47. Prove that for any sets X and Y, we have that X ∪Y = X if and only if Y ⊆ X.

Proof. By the above definition of set equality, we must demonstrate that if Y ⊆ X, then X∪Y ⊆ X

and X ⊆ X ∪Y. Observe that the latter inclusion is true by definition of the union, hence it suffices

to prove that if Y ⊆ X, we have that X ∪Y ⊆ X. We will assume to this end that Y ⊆ X. Observe

that if w ∈ X ∪ Y, then by definition of the set union, we have that w ∈ X or w ∈ Y. Either way,

by hypothesis that Y ⊆ X, it follows that w ∈ X, hence we conclude that X ∪ Y ⊆ X.

Conversely, we will assume that X ∪ Y = X. Given any element y ∈ Y, we have that y ∈ X ∪ Y
so that y ∈ X by assumption that X ∪ Y = X. We conclude that Y ⊆ X, as desired.

We will assume throughout the rest of this section that X, Y, and W are some (possibly empty)

sets for which the inclusions X ⊆ W and Y ⊆ W hold. We remind the reader that in this case, we

refer to W as our universe (or as the universal set), and we may view all elements of X and Y

as elements of W via the aforementioned inclusions. We obtain the following membership laws.

Theorem 0.4.48 (Law of Excluded Middle for Sets). Consider any (possibly empty) sets X ⊆ W.

Given any element w ∈ W, we must have that either w ∈ X or w /∈ X.
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Theorem 0.4.49 (Law of Non-Contradiction for Sets). Consider any (possibly empty) sets X ⊆ W.

Given any element w ∈ W, we cannot have that both w ∈ X and w /∈ X.

We omit the proofs of the aforementioned facts because they follow immediately from the Law

of Excluded Middle and the Law of Non-Contradiction for the set membership statementM(w,X).

Even more, we have De Morgan’s Laws for the relative complements of X ∪ Y and X ∩ Y in W.

Theorem 0.4.50 (De Morgan’s Laws for Sets). Consider any (possibly empty) sets X, Y ⊆ W.

1.) We have that W \ (X ∪ Y ) = (W \X) ∩ (W \ Y ).

2.) We have that W \ (X ∩ Y ) = (W \X) ∪ (W \ Y ).

Proof. (1.) We will first establish the inclusion W \ (X ∪ Y ) ⊆ (W \ X) ∩ (W \ Y ). Given any

element w ∈ W \ (X ∪ Y ), we have that w ∈ W and w /∈ X ∪ Y by definition of the set relative

complement. Consequently, we must have that w /∈ X and w /∈ Y. But this implies that w ∈ W \X
and w ∈ W \ Y so that w ∈ (W \X)∩ (W \ Y ). Conversely, suppose that w ∈ (W \X)∩ (W \ Y ).

By definition of the set intersection, we have that w ∈ W \X and w ∈ W \ Y. By definition of the

relative complement, we have that w ∈ W and w /∈ X and w /∈ Y so that w ∈ W and w /∈ X ∪ Y.
(2.) We will first establish the inclusion W \ (X ∩ Y ) ⊆ (W \X)∪ (W \ Y ). Given any element

w ∈ W \ (X ∩ Y ), we have that w ∈ W and w /∈ X ∩ Y by definition of the relative complement.

Consequently, we must have that either w /∈ X or w /∈ Y. But this implies that w ∈ W \ X or

w ∈ W \ Y so that w ∈ (W \X) ∪ (W \ Y ). Conversely, suppose that w ∈ (W \X) ∪ (W \ Y ). By

definition of the union, we have that w ∈ W \X or w ∈ W \ Y. Consequently, we have that w ∈ W

and either w /∈ X or w /∈ Y. Either way, it follows that w /∈ X ∩ Y so that w ∈ W \ (X ∩ Y ).

Often, we will simultaneously deal with n ≥ 2 (possibly empty) sets X1, X2, . . . , Xn such that

Xi ⊆ W for each integer 1 ≤ i ≤ n; in this case, it is easiest to adopt the notation of Section 0.1.

We will say that each set Xi is indexed by an integer subscript 1 ≤ i ≤ n. Consider the set union

n⋃
i=1

Xi = X1 ∪X2 ∪ · · · ∪Xn = {w | w ∈ Xi for some integer 1 ≤ i ≤ n}.

Observe that w ∈ ∪n
i=1Xi if and only if the existence statement “∃i ∈ {1, 2, . . . , n}, w ∈ Xi” is true.

Consider the set intersection

n⋂
i=1

Xi = X1 ∩X2 ∩ · · · ∩Xn = {w | w ∈ Xi for every integer 1 ≤ i ≤ n}.

Observe that w ∈ ∩n
i=1Xi if and only if the universal statement “∀i ∈ {1, 2, . . . , n}, w ∈ Xi” is true.

Generally, De Morgan’s Laws for Sets hold for finite unions and intersections of sets as follows.

Proposition 0.4.51 (Generalized De Morgan’s Laws). Consider any sets X1, X2, . . . , Xn ⊆ W.

1.) We have that W \ (X1 ∪X2 ∪ · · · ∪Xn) = (W \X1) ∩ (W \X2) ∩ · · · ∩ (W \Xn).

2.) We have that W \ (X1 ∩X2 ∩ · · · ∩Xn) = (W \X1) ∪ (W \X2) ∪ · · · ∪ (W \Xn).

Likewise, we have the following distributive laws for finite unions and intersections of sets.
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Proposition 0.4.52 (Distributive Laws for Sets). Consider any sets X1, X2, . . . , Xn and Y.

1.) We have that Y ∩ (X1 ∪X2 ∪ · · · ∪Xn) = (Y ∩X1) ∪ (Y ∩X2) ∪ · · · ∪ (Y ∩Xn).

2.) We have that Y ∪ (X1 ∩X2 ∩ · · · ∩Xn) = (Y ∪X1) ∩ (Y ∪X2) ∩ · · · ∩ (Y ∪Xn).

Proof. (1.) By definition of set equality, we must establish both of the set containments

Y ∩ (X1 ∪X2 ∪ · · · ∪Xn) ⊆ (Y ∩X1) ∪ (Y ∩X2) ∪ · · · ∪ (Y ∩Xn) and

Y ∩ (X1 ∪X2 ∪ · · · ∪Xn) ⊇ (Y ∩X1) ∪ (Y ∩X2) ∪ · · · ∪ (Y ∩Xn).

Consider any element x ∈ Y ∩ (X1 ∪X2 ∪ · · · ∪Xn). By definition of set intersection, we have that

x ∈ Y and x ∈ X1 ∪ X2 ∪ · · · ∪ Xn. Likewise, by definition of set union, we have that x ∈ Xi for

some integer 1 ≤ i ≤ n. Consequently, it follows that x ∈ Y ∩Xi for some integer 1 ≤ i ≤ n so that

x ∈ (Y ∩X1)∪ (Y ∩X2)∪ · · · ∪ (Y ∩Xn), and the subset containment ⊆ is established. Conversely,

suppose that x ∈ (Y ∩ X1) ∪ (Y ∩ X2) ∪ · · · ∪ (Y ∩ Xn). By definition of set union, we have that

x ∈ Y ∩ Xi for some integer 1 ≤ i ≤ n. Consequently, it follows that x ∈ Y and x ∈ Xi for some

integer 1 ≤ i ≤ n. But this implies that x ∈ X and x ∈ X1 ∪X2 ∪ · · · ∪Xn, hence ⊇ holds.

(2.) We reserve the proof of the second distributive law for sets as Exercise 0.6.37.

By appealing to our dictionary between logic and set theory, we may also prove many important

properties of functions. We remind the reader that a function f : X → Y is simply a subset of the

Cartesian product X × Y with the additional property that for each element x ∈ X, there exists

one and only one element f(x) = y ∈ Y such that (x, f(x)) ∈ f. Each function f : X → Y gives

rise to a set range(f) = {f(x) | x ∈ X} of all images of elements of X under f. Conversely, for

each subset W ⊆ Y, we may consider the set f−1(W ) = {x ∈ X | f(x) ∈ W} of inverse images of

elements ofW under f.We refer to the function f : X → Y as injective provided that f(x) = f(y)

implies that x = y for all elements f(x) ∈ range(f). Likewise, we refer to the function f : X → Y

as surjective provided that Y = range(f), i.e., for every element y ∈ Y, there exists an element

x ∈ X such that y = f(x). We say that a function is bijective if it is injective and surjective.

Proposition 0.4.53. Consider any function f : X → Y between any two sets X and Y.

(a.) If f is injective, then f−1(f(V )) = V for any set V ⊆ X.

(b.) If f is surjective, then f(f−1(W )) = W for any set W ⊆ Y.

Proof. (a.) By Exercise 0.6.39, it suffices to prove that f−1(f(V )) ⊆ V. Consider any element

x ∈ f−1(f(V )). By definition of the inverse image f−1(f(V )) of f(V ), we have that f(x) ∈ f(V ).

By definition of the image f(V ) of V, it follows that f(x) = f(v) for some element v ∈ V. Last, by

assumption that f is injective and V ⊆ X, we conclude that x = v, hence x is an element of V.

(b.) By Exercise 0.6.39, it suffices to prove that W ⊆ f(f−1(W )). Consider any element w ∈ W.

By assumption that f is surjective and W ⊆ Y, there exists an element x ∈ X such that w = f(x).

By definition of the inverse image f−1(W ), it follows that x ∈ f−1(W ). By definition of the image

f(f−1(W )), we conclude that w = f(x) for some element x ∈ f−1(W ) so that w ∈ f(f−1(W )).

Conversely, if f−1(f(V )) = V holds for any set V ⊆ X, then f : X → Y must be injective, and

likewise, if f(f−1(W )) = W for any set W ⊆ Y, then f must be surjective (see Exercise 0.6.40).
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0.5 Chapter 0 Overview

We recall that a set X is a collection of distinct objects called elements (or members) that often

possess common properties. Each element of a set X is written as a lowercase x. If X possesses only

finitely many elements x1, x2, . . . , xn, then we may describe the set X using the explicit notation

X = {x1, x2, . . . , xn}. Often, it is most convenient to express a set X using set-builder notation

X = {x | P (x)} for some property P (x) common to all elements x ∈ X. We assume the existence

of a set ∅ that does not possess any elements; it is called the empty set. Every collection of sets

admits certain operations that allow us to combine, compare, and take differences. Explicitly,

� the union of the sets X and Y is the set X ∪ Y = {w | w ∈ X or w ∈ Y };

� the intersection of the sets X and Y is the set X ∩ Y = {w | w ∈ X and w ∈ Y }; and

� the relative complement of X with respect to Y is the set Y \X = {w | w ∈ Y and w /∈ X}.

We say that Y is a subset of X if every element of Y is an element of X, in which case we write

Y ⊆ X; if Y is a subset of X and there exists an element of X that is not an element of Y, then

Y is a proper subset of X, in which case we write Y ⊂ X. By the Going-Down Property of Set

Intersection or the Going-Up Property of Set Union, we have that Y is a subset of X if and only if

X ∩ Y = Y if and only if X ∪ Y = X. If Y ⊆ X and X ⊆ Y, then X = Y ; otherwise, the sets X

and Y are not equal. One other way to distinguish a (finite) set X is by the number of elements X

possesses, called the cardinality of X and denoted by |X| (or #X if the bars are ambiguous).

Conveniently, we may work with large collections of sets by introducing an index set I. Con-

cretely, we may denote by {Xi | i ∈ I} the family of sets indexed by I. If each set Xi is a subset

of some set U, we refer to U as a universal set. By definition, the union of the sets Xi is the set⋃
i∈I

Xi = {u | u ∈ Xi for some element i ∈ I}

so that membership of an element u ∈ U in this arbitrary union is characterized by u ∈ ∪i∈IXi if

and only if u ∈ Xi for some index i ∈ I. Likewise, the arbitrary intersection of these sets is⋂
i∈I

Xi = {u | u ∈ Xi for all elements i ∈ I}

with membership of an element u ∈ U in the intersection characterized by u ∈ ∩i∈IXi if and only

if u ∈ Xi for all indices i ∈ I. We say that two sets Xi and Xj are disjoint if Xi ∩ Xj = ∅; if

Xi ∩Xj = ∅ for all distinct indices i, j ∈ I, then the sets in {Xi | i ∈ I} are pairwise disjoint or

mutually exclusive. We say that P = {Xi | i ∈ I} forms a partition of the set U if and only if

(a.) Xi is nonempty for each index i ∈ I;

(b.) U = ∪i∈IXi; and

(c.) the sets Xi are pairwise disjoint (i.e., Xi ∩Xj = ∅ for every pair of distinct indices i, j ∈ I).
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We define the Cartesian product of two sets X and Y to be the set consisting of all ordered

pairs (x, y) such that x ∈ X and y ∈ Y, i.e., X × Y = {(x, y) | x ∈ X and y ∈ Y }. Cardinality of

finite sets X and Y is multiplicative in the sense that |X ×Y | = |X| · |Y |. We refer to any subset R

of the Cartesian product X × Y as a relation from the set X to the set Y. We say that an element

x ∈ X is related to an element y ∈ Y under R if (x, y) ∈ R, and we write that x R y in this case.

Every relation R ⊆ X × Y induces a relation R−1 ⊆ Y ×X called the inverse relation defined by

R−1 = {(y, x) | (x, y) ∈ R}.

If X is any set, a relation on X is a subset R of the Cartesian product X ×X. Every set X

admits a relation ∆X = {(x, x) | x ∈ X} called the diagonal. We say that a relation R on X is

� reflexive if and only if (x, x) ∈ R for all elements x ∈ X;

� symmetric if and only if (x, y) ∈ R implies that (y, x) ∈ R;

� antisymmetric if and only if (x, y) ∈ R and (y, x) ∈ R implies that x = y; and

� transitive if and only if (x, y) ∈ R and (y, z) ∈ R together imply that (x, z) ∈ R.

Equivalence relations are precisely those relations that are reflexive, symmetric, and transitive;

partial orders are precisely those relations that are reflexive, antisymmetric, and transitive. Every

equivalence relation E on X induces a partition of E via the equivalence classes of elements of X.

Explicitly, we say that two elements x, y ∈ X are equivalent modulo E if and only if (x, y) ∈ E,

in which case we write that x E y; thus, the equivalence class of an element x ∈ X is the collection

of elements y ∈ X that are equivalent to x modulo E, i.e., the equivalence class of x is simply

[x] = {y ∈ X | y E x} = {y ∈ X | (y, x) ∈ E}.

Every element of a nonempty set X belongs to one and only one equivalence class of X modulo an

equivalence relation E, hence the distinct equivalence classes of X modulo E partition X.

Every set admits a partial order, hence every set is a partially ordered set; however, there

can be many ways to view a set as a partially ordered set because there can be many different

partial orders on a set. If P is a partial order on a set X, then we say that a pair of elements

p, q ∈ P are comparable if either (p, q) ∈ P or (q, p) ∈ P ; otherwise, we say that p and q are

incomparable. We say that a partial order P on X is a total order on X if every pair of elements

p, q ∈ P are comparable. Every partial order P of X induces a partial order on the subsets Y ⊂ X

via P |Y = {(y1, y2) ∈ Y × Y | (y1, y2) ∈ P}; if P |Y is a total order on Y ⊆ X, then we say that Y

is a chain (with respect to P ) in X. We say that an element x0 ∈ X is an upper bound on Y

(with respect to P ) if (y, x) ∈ P for every element y ∈ Y. We will also say that an element x0 ∈ X

is maximal (with respect to P ) if it does not hold that (x0, x) ∈ P for any element x ∈ X \ {x0}.
Zorn’s Lemma asserts that if P is a partial order on an arbitrary set X such that every chain Y in

X has an upper bound in Y, then Y admits a maximal element y0 ∈ Y (with respect to P ).

We may define a function f : X → Y with domain X and codomain Y by declaring for each

element x ∈ X a unique (but not necessarily distinct) element f(x) ∈ Y. Every function f : X → Y

induces a subset f(V ) = {f(v) | v ∈ V } of Y for every subset V ⊆ X called the direct image of
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V (in Y ) under f. Given any subset W ⊆ Y, the inverse image of W (in X) with respect to f is

f−1(W ) = {x ∈ X | f(x) ∈ W}. We say that f : X → Y is injective if it holds that f(x1) = f(x2)

implies that x1 = x2 for any pair of elements x1, x2 ∈ X. On the other hand, if for every element

y ∈ Y, there exists an element x ∈ X such that y = f(x), then f : X → Y is surjective. We say

that a function f : X → Y is bijective provided that it is both injective and surjective.

Given any functions f : X → Y and g : Y → Z, we may define a function g ◦ f : X → Z called

the composite function of f under g by declaring that (g ◦ f)(x) = g(f(x)) for all x ∈ X; the

construction of composite functions is an operation known as function composition. Composition

of functions is associative so that h◦(g◦f) = (h◦g)◦f whenever each of these composite functions is

well-defined; however, function composition is neither cancellative nor commutative. Concretely,

we cannot conclude that f = g simply because h ◦ f = h ◦ g; we cannot conclude that h = j

simply because h ◦ g = j ◦ g; and it is not necessarily the case that f ◦ g = g ◦ f. Composition of

functions preserves the injectivity and surjectivity of functions, so it preserves bijections, as well.

Every function f : X → Y is a relation from X to Y, hence there exists an inverse relation f−1 from

Y to X; this inverse relation f−1 is a function if and only if f is bijective. Crucially, the inverse

function f−1 : Y → X of a bijective function f : X → Y is the unique function satisfying that

f−1 ◦ f = idX and f ◦ f−1 = idY for the identity function idX : X → X defined by idX(x) = x.

Generally, if f : X → Y is an injective function, then the induced function F : X → f(X)

defined by F (x) = f(x) is bijective. Consequently, there exists a function F−1 : f(X) → X defined

by F−1(y) = x for every element y = f(x). Computing the inverse function F−1 corresponding to

the induced function F amounts to solving the equation y = F (x) in terms of x; the solution has

the form F−1(y) = x, and it is precisely the function F−1 that is the inverse function of F.

We say that a complete sentence P is a statement if it asserts something that can be unam-

biguously measured as true or false. Examples of statements include, “The integer 3 is an odd” and

“The integer 17 is negative.” We note that the first statement is true, but the second statement

is false. Using logical connectives, we can form new statements from given statements P and Q.

Explicitly, the implication P ⇒ Q is the statement, “P implies Q” (or equivalently, “If P, then

Q”); the implication is false if and only if P is true and Q is false. Regardless of the verity of the

statement Q, if the statement P is false, then the implication P ⇒ Q must be vacuously true. We

define the disjunction P ∨Q (“P or Q”), the conjunction P ∧Q (“P and Q”), and the negation

¬P (“not P”). Observe that the disjunction P ∨Q is true if and only if P is true or Q is true; the

conjunction P ∨Q is true if and only if P is true and Q is true; and the negation ¬P is true if and

only if P is false. Given any statement P, the disjunction P ∨ ¬P is true by the Law of Excluded

Middle, and the conjunction P ∧ ¬P is false by the Law of Non-Contradiction.

We use truth tables to deduce the verity of a statement S(P,Q) that depends on two statements

P and Q. One can construct a truth table for S(P,Q) by writing all possible truth values of P

in one column; all possible truth values of Q in a subsequent column; and the resultant truth

values of the statement S(P,Q) in a third column. Considering that the statements P and Q could

themselves depend upon other statements P1, . . . , Pn, a truth table grows arbitrarily large as the

number of statements increases. Generally, we need 2n+1 rows and n+1 columns to construct the

truth table of a statement S(P1, . . . , Pn) defined for n distinct statements P1, . . . , Pn.

We say that two statements P and W are logically equivalent if and only if they induce the

same truth table; in particular, if P and Q are equivalent statements, the truth values of P are the
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same as the truth values of Q for all possible truth inputs, hence the verity of the statement P is

exactly the same as the verity of the statement Q. Even more, if the truth values of P are all true,

then P is a tautology; if the truth values for P are all false, then P is a contradiction.

De Morgan’s Laws are two rules of inference that relate the conjunction, disjunction, and nega-

tion. Concretely, De Morgan’s Laws assert the logical equivalence of the following statements.

(a.) ¬(P ∨Q) : It is not the case that either P or Q.

(b.) ¬P ∧ ¬Q : It is neither the case that P nor the case that Q.

Likewise, De Morgan’s Laws for the negation of a conjunction assert the equivalence of the following.

(c.) ¬(P ∧Q) : It is not the case that both P and Q.

(d.) ¬P ∨ ¬Q : It is either not the case that P or not the case that Q.

Logical quantifiers allow us to symbolically handle statements involving quantities. We use

the universal quantifier ∀ to express that an open sentence P (x) is true “for all” possible values

of x in its domain, and we use the existential quantifier ∃ to express that “there exists” a value

of x in the domain of P (x) such that P (x) is true. We say that an element x0 in the domain of the

open sentence P (x) is unique if it is the only value in the domain of P (x) such that P (x0) is true.

We use the uniqueness quantifier ∃! to express the existence (∃) and uniqueness (!) of x0.

Often, we seek to prove conditional statements of the form P ⇒ Q. Generally, a vacuous proof

amounts to showing that P is false. Conversely, a trivial proof follows by showing that Q is

true. If neither P is false nor Q is true, then a direct proof follows by assuming that P is true

and deducing that Q is true. We refer to this rule of inference as modus ponens. Conditional

statement P ⇒ Q is logically equivalent to its contrapositive ¬Q ⇒ ¬P (see Table 15 and the

subsequent Proposition 0.2.37). Consequently, a proof by contrapositive follows by assuming

that ¬Q is true and deducing that ¬P is true. We refer to this rule of inference as modus tollens.

Concretely, if ¬P can be deduced from ¬Q, then we may construct a proof by contrapositive; on the

other hand, if Q can be deduced from P, then we may construct a direct proof. Otherwise, we seek

a proof by contradiction by assuming that P is true and Q is false and deriving a contradiction

using any assumption made in the context of the proof or any definition or well-known fact. Proof

by contradiction can be deduced from the Law of Excluded Middle, the Law of Non-Contradiction,

and the logical equivalence of the statements ¬(P ⇒ Q) and P ∧ ¬Q (see Table 14).

Collectively, Principle of Mathematical Induction comprises three equivalent statements:

the Principle of Ordinary Induction, the Principle of Complete Induction, and the Well-Ordering

Principle. We will assume that n0 is an integer. Consider any open sentence P (n) defined for all

integers n ≥ n0. Concretely, the Principle of Ordinary Induction asserts that the statement P (n) is

true for all integers n ≥ n0 provided that the following pair of statements is true.

(a.) We have that P (n0) is a true statement.

(b.) If P (n) is a true statement for some integer n ≥ n0, then P (n+ 1) is a true statement.

Likewise, the Principle of Complete Induction asserts that the statement P (n) is true for all integers

n ≥ n0 provided that the following pair of statements is true.
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(c.) We have that P (n0) is a true statement.

(d.) If P (k) is a true statement for each integer n0 ≤ k ≤ n, then P (n+ 1) is a true statement.

One crucial benefit of using complete induction as opposed to ordinary induction is that the stronger

hypotheses of complete induction provide more information with which to conveniently write proofs

that might otherwise prove difficult with ordinary induction (see Exercise 0.6.22). Even more, the

Principle of Mathematical Induction appears in the guise of the Well-Ordering Principle of the

non-negative integers — a powerful tool that guarantees that every nonempty set of non-negative

integers admits a smallest element with respect to the total order ≤. Put another way, if S ⊆ Z≥0

is a nonempty set, then there exists an element s0 ∈ S such that s0 ≤ s for all elements s ∈ S.

Using the Well-Ordering Principle, we may rigorously establish that for any integer a and nonzero

integer b, there exist unique integers q and r such that b = qa + r and 0 ≤ r ≤ |b| − 1; this fact is

known as the Division Algorithm. We refer to the integer a as the dividend; b is the divisor; q is

the quotient; and r is the remainder of b modulo a. Conventionally, if we obtain a remainder of

zero when we divide an integer a by a nonzero integer b, then we say that b divides a; in this case,

there exists a unique integer q such that a = qb, and we use the notation b | a. If a and b are any

integers, then a nonzero integer c is called a common divisor of a and b if it holds that c | a and

c | b; the greatest common divisor of a and b is the unique integer d = gcd(a, b) such that

(a.) d | a and d | b, i.e., d is a common divisor of a and b and

(b.) if c is any common divisor of a and b, then c | d.

We say that the nonzero integers a and b are relatively prime if and only if gcd(a, b) = 1. Bézout’s

Identity asserts that gcd(a, b) = ax + by for some integers x and y. We may employ the Euclidean

Algorithm to determine the integers x and y that are guaranteed by Bézout’s Identity.

Using logical quantifiers allows us to conveniently state many properties of sets, e.g., the Law

of Excluded Middle for Sets, Law of Non-Contradiction for Sets, and De Morgan’s Laws for Sets.
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0.6 Chapter 0 Exercises

Exercise 0.6.1. Express each of the following sets in set-builder notation.

(a.) S = {1, 4, 7, 10}

(b.) T = {−5,−4,−3, 3, 4, 5}

(c.) U = {−19,−18, . . . ,−4, 4, 5, . . . , 19}

(d.) V = {2, 3, 5, 7, 11, 13, 17, 19, . . . }

(e.) W = {. . . ,−3,−1, 1, 3, . . . }

(f.) X =
{
1, 1

2
, 1
4
, 1
8
, 1
16
, . . .

}
(g.) Y =

{
1
9
,−1

3
, 1,−3, 9, . . .

}
(h.) Z = {. . . ,−2π,−π, 0, π, 2π, . . . }

Exercise 0.6.2. Express each of the following sets in explicit notation.

(a.) S =
{
s ∈ R | s2 + 4

3
s+ 1

3
= 0
}

(b.) T = {t ∈ R | tan(t) = 0}

(c.) U =
{
u ∈ R : d

du

√
u2 + 1 = 0

}
(d.) V = {v ∈ N | v2 + 1 = 26}

(e.) W = {w ∈ Z : w is odd and |w| < 10}

(f.) X = {x ∈ R | x3 − 6x2 + 11x− 6 = 0}

(g.) Y = {y ∈ R | y4 + 3 = 0}

(h.) Z =

{
z ∈ R : lim

x→z

x2

x4 − 2x2 + 1
= ∞

}
Exercise 0.6.3. Consider the set U = {1, 2, 3, 4, 5} with subsets A and B such that

(a.) |A| = |B| = 3;

(b.) 1 lies in A but does not lie in B;

(c.) 2 lies in B but does not lie in A;

(d.) 3 lies in either A or B but not both;

(e.) 4 lies in either A or B but not both; and

(f.) 5 lies in either A or B but not both.

List all possibilities for A in curly brace notation; then, determine the corresponding sets B.

Exercise 0.6.4. Consider the following sets.

W = {1, 2, 3, . . . , 10} E = {n | n is an even integer}
X = {1, 3, 5, 7, 9} O = {n | n is an odd integer}
Y = {2, 4, 6, 8, 10} Z = {n | n is an integer}

Use the set operations ⊆, ∪, ∩, and \ to describe as many relations among these sets as possible.

Exercise 0.6.5. Consider the sets W,X, Y,E,O, and Z defined in Exercise 0.6.4.

(a.) Compute the number of elements of X × Y.

(b.) List at least three distinct elements of O× E.
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(c.) List all elements of the diagonal ∆X of X.

(d.) Express the sets O and E in set-builder notation.

(e.) Construct a bijective function f : O → E. Conclude that O and E have “essentially the same”

number of elements, i.e., there are “as many” odd integers as there are even integers.

(f.) Construct a bijective function f : O → Z. Conclude that O and Z have “essentially the same”

number of elements, i.e., there are “as many” odd integers as there are integers.

Exercise 0.6.6. Consider the set Z of integers.

(a.) Construct a partition of Z into three sets.

(b.) Construct a partition of Z into four sets.

(c.) Construct a partition of Z into n sets for any positive integer n.

Exercise 0.6.7. Consider the set W consisting of all words in the English language.

(a.) Construct a relation R ⊆ W ×W that is symmetric but not reflexive or transitive.

(b.) Construct a relation R ⊆ W ×W that is reflexive and symmetric but not transitive.

(c.) Prove that R = {(v, w) ∈ W ×W | v and w begin with the same letter} is an equivalence

relation on W ; then, determine the number of distinct equivalence classes of W modulo R.

(d.) Prove that R = {(v, w) ∈ W ×W | v and w have the same number of letters} is an equiva-

lence relation on W ; then, describe the equivalence class of the word “awesome.”

Exercise 0.6.8. Consider the sets Z of integers and Z∗ of nonzero integers. Prove that the relation

R ⊆ Z × Z∗ defined by (a, b) R (c, d) if and only if ad = bc for any pair of elements (a, b), (c, d) ∈
Z× Z∗ is an equivalence relation; then, describe the equivalence classes of Z× Z∗ modulo R.

(Hint: On the second part of the exercise, try replacing the notation (a, b) with a/b, instead.)

Exercise 0.6.9. Given any set X, consider the collection SX = {Y | Y ⊆ X} of subsets of X.

Prove that the inclusion ⊆ defines a partial order P on SX such that (Y1, Y2) ∈ P if and only if

Y1 ⊆ Y2; then, either prove that P is a total order on S or provide an explicit counterexample.

Exercise 0.6.10. List the maximal elements of the subset S = {0, 1, 2, 3, 4, 5, 6, 7} of the set Z≥0

of non-negative integers with respect to the partial order D of divisibility.

Exercise 0.6.11. Complete the following using modular arithmetic.

(a.) Find the least positive integer x for which 5a+ 4 ≡ x (mod 6) if a ≡ 1 (mod 6).

(b.) Find the least positive x for which 6a− 3b ≡ x (mod 7) if a ≡ 4 (mod 7) and b ≡ 5 (mod 7).

(c.) Completely reduce 20222023 modulo 10 provided that 22023 ≡ 8 (mod 10).

(d.) Completely reduce 20242025 modulo 10 provided that 22023 ≡ 8 (mod 10).
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Exercise 0.6.12. Consider any nonzero integer n and any integers a and b. Prove the following

statement or provide an explicit counterexample to demonstrate that it is false.

If ab ≡ 0 (mod n), then a ≡ 0 (mod n) or b ≡ 0 (mod n).

Exercise 0.6.13. Consider any prime number p and any integers a and b. Prove the following

statement or provide an explicit counterexample to demonstrate that it is false.

If ab ≡ 0 (mod p), then a ≡ 0 (mod p) or b ≡ 0 (mod p).

Exercise 0.6.14. Prove that if n is any positive integer, then for any integer a,

(a.) there exists an integer b such that ab ≡ 0 (mod n) or

(b.) there exists an integer c such that ac ≡ 1 (mod n).

Exercise 0.6.15. Explain if each of the following is a statement. Construct the negation of each

statement; identify tautologies and contradictions; and write the contrapositive of each implication.

(a.) I yam what I yam.

(b.) If you know, then you know.

(c.) Where there is a will, there is a way.

(d.) Jacob, keep your head down!

(e.) Every four years, there is a Leap Year.

(f.) Does it come in a pint?

(g.) Not all who wander are lost.

(h.) I was and I was not.

(i.) Either it is freezing or Sam wears shorts.

(j.) There exists an irrational number.

Exercise 0.6.16. Consider the following statements.

P : The sun is shining in Kansas City.

Q : Bernard rides his bike to work.

Use the symbols P and Q and logical connectives such as the biconditional ⇔, conjunction ∧,
disjunction ∨, implication ⇒, and negation ¬ to convert each of the following statements into

symbols; then, identify all logically equivalent statements, tautologies, and contradictions.

(a.) If the sun is shining in Kansas City, then Bernard rides his bike to work.

(b.) Bernard rides his bike to work only if the sun is shining in Kansas City.

(c.) Either the sun is not shining in Kansas City or Bernard rides his bike to work.

(d.) The sun is shining in Kansas City, and Bernard does not ride his bike to work.

(e.) Neither the sun is shining in Kansas City nor Bernard rides his bike to work.

(f.) Either the sun is not shining in Kansas City or Bernard does not ride his bike to work.

(g.) The sun is not shining in Kansas City, and Bernard does not ride his bike to work.
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(h.) Either Bernard rides his bike to work or Bernard does not ride his bike to work.

(i.) The sun is shining in Kansas City, and the sun is not shining in Kansas City.

(j.) Bernard rides his bike to work if and only if the sun is shining in Kansas City.

Exercise 0.6.17. Let P, Q, and R be any statements. Construct an appropriate truth table to

prove that the statements “If P, then Q or R” and “If P and not Q, then R” are logically equivalent.

Exercise 0.6.18. Use Table 11 to prove that if Bob placed in the top two in a cycling race on

Saturday and he did not place second, then Bob must have placed first.

Exercise 0.6.19. Construct a proof by contradiction to demonstrate that if Bob placed in the top

two in a cycling race on Saturday and he did not place second, then Bob must have placed first.

Cite any theorems or laws of inference by name that you use in your proof.

Exercise 0.6.20. Given any integer n ≥ 0, prove that
(
2n
n

)
> 2n using induction.

Exercise 0.6.21. Consider any finite set X with power set P (X).

(a.) Prove that |P (X)| = 2|X| using induction.

(b.) Consider the collection 2X of all functions f : X → X. Construct an explicit bijection between

P (X) and 2X . Conclude from part (a.) and Proposition 0.1.86 that |2X | = 2|X|.

Exercise 0.6.22. Consider the sequence of Fibonacci numbers Fn defined recursively for all non-

negative integers by F0 = 0, F1 = 1, and Fn+2 = Fn+1 + Fn. We refer to Fn as the nth Fibonacci

number. Quite astoundingly, the Fibonacci numbers appear abundantly in nature.

(a.) Prove that Fn < 2n for each integer n ≥ 0.

(b.) Prove that Fn+1Fn−1 = F 2
n + (−1)n for each integer n ≥ 2.

(c.) Prove that gcd(Fn, Fn+1) = 1 for all integers n ≥ 0.

Exercise 0.6.23. Complete the following two steps to prove that the Principle of Ordinary Induc-

tion and the Principle of Complete Induction are materially equivalent to one another.

1.) Given any statement P (n) defined for a non-negative integer n, let Q(n) be the statement

that P (k) holds for all integers 1 ≤ k ≤ n. Use the Principle of Ordinary Induction to prove

that the statement Q(n) is true for all integers n ≥ 0, hence P (n) is true for all integers n ≥ 0.

Unravelling this shows that ordinary induction implies complete induction.

(Hint: Observe that Q(0) is vacuously true, hence we may assume that Q(n) is true. By

definition, this means that P (k) is true for all integers 1 ≤ k ≤ n. What about P (n+ 1)?)

2.) Given any statement P (n) defined for a non-negative integer n, let Q(n) be the statement

that P (k) holds for some integer 1 ≤ k ≤ n. Use the Principle of Complete Induction to prove

that the statement Q(n) is true for all integers n ≥ 0, hence P (n) is true for all integers n ≥ 0.

Unravelling this shows that complete induction implies ordinary induction.

(Hint: Observe that Q(0) is vacuously true, hence we may assume that Q(k) is true for all

integers 1 ≤ k ≤ n; in particular, P (1) is true. What does this say about Q(n+ 1)?)
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Exercise 0.6.24. Complete the following three steps to prove that the Well-Ordering Principle

and the Principle of Ordinary Induction are materially equivalent to one another.

1.) Prove that 0 is the smallest non-negative integer with respect to ≤.

2.) Prove that if S ⊆ Z≥0 satisfies 0 ∈ S and n+ 1 ∈ S whenever n ∈ S, then Z≥0 ⊆ S.

3.) Conclude that the Well-Ordering Principle implies the Principle of Ordinary Induction; then,

use Exercise 0.6.23 in tandem with the proof of the Well-Ordering Principle to conclude

conversely that the Principle of Ordinary Induction implies the Well-Ordering Principle.

Exercise 0.6.25. Prove that there is no positive integer less than 1.

Exercise 0.6.26. Recall that a positive integer p is prime if and only if the only integers that

divide p are ±p and 1. Prove that if a and b are any integers such that p | ab, then p | a or p | b.

(Hint: We may assume that p ∤ a and show that p | b; now, use Bézout’s Identity.)

Exercise 0.6.27 (Euclid’s Lemma). Prove that if a, b, c ∈ Z, gcd(a, b) = 1, and a | bc, then a | c.

Exercise 0.6.28. Prove that there are no positive integers a, b, and c such that a2 + b2 = 3c2.

Exercise 0.6.29 (Fundamental Theorem of Arithmetic). Given any positive integer a, prove that

(a.) there exist (not necessarily distinct) prime numbers p1, . . . , pk such that a = p1 · · · pk and

(b.) the primes p1, . . . , pk are unique in the sense that if a = q1 . . . qℓ, then we must have that ℓ = k

and {p1, . . . , pk} = {q1, . . . , qk} (i.e., q1, . . . , qk are simply a rearrangement of p1, . . . , pk).

(Hint: Consider the collection N of positive integers that do not admit such a prime factorization.

Use the Well-Ordering Principle to show that if N is nonempty, then there exists a smallest element

n with respect to ≤. Consider the possible factors of the positive integer n to see that N is empty,

hence the existence is established. On the matter of uniqueness, proceed by induction on k.)

Exercise 0.6.30. Prove that every nonzero integer a can be written as a = ±pe11 . . . penn for some

distinct prime numbers p1, . . . , pn and unique non-negative integers e1, . . . , en such that pei+1
i ∤ a.

Given any nonzero integers a and b, the least common multiple lcm(a, b) of a and b can be

defined in a manner analogous to the greatest common divisor of a and b. Explicitly, we say that

an integer m is a multiple of a if and only if a | m. Consequently, m is a common multiple of a

and b if and only if a | m and b | m; a least common multiple of a and b is ℓ = lcm(a, b) such that

(1.) a | ℓ and b | ℓ, i.e., ℓ is a common multiple of a and b and

(2.) if ℓ′ is any common multiple of a and b, then ℓ | ℓ′.

Exercise 0.6.31. Prove that the least common multiple lcm(a, b) is unique up to sign.

By the Fundamental Theorem of Arithmetic, for any positive integers a and b, there exist prime

numbers p1, . . . , pk and unique non-negative integers e1, . . . , ek, f1, . . . , fk such that a = pe11 · · · pekk
and b = pf11 · · · pfkk . Consider these prime factorizations of a and b for the next three exercises.

Exercise 0.6.32. Prove that gcd(a, b) = p
min{e1,f1}
1 · · · pmin{ek,fk}

k .
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Exercise 0.6.33. Prove that lcm(a, b) = p
max{e1,f1}
1 · · · pmax{ek,fk}

k .

Exercise 0.6.34. Conclude from Exercises 0.6.32 and 0.6.33 that ab = gcd(a, b) lcm(a, b).

Exercise 0.6.35. Given any prime number p, consider the collection Zp of equivalence classes of

the integers modulo p. Prove that [a] admits a multiplicative inverse if and only if p ∤ a.

Exercise 0.6.36. Consider any sets W, X, and Y such that X ⊆ W and Y ⊆ W.

(a.) Prove that for any subset Z ⊆ W such that Z ⊇ X and Z ⊇ Y, it follows that Z ⊇ X ∪ Y.
Conclude that U = X ∪ Y is the “smallest” subset of W containing both X and Y.

(b.) Prove that for any subset Z ⊆ W such that Z ⊆ X and Z ⊆ Y, it follows that Z ⊆ X ∩ Y.
Conclude that I = X ∩ Y is the “largest” subset of W contained in both X and Y.

Consider the relative complement X ′ = W \X of X in W. We may sometimes refer to X ′ simply

as the complement of X if we are dealing only with subsets of W, i.e., if W is our universe.

(c.) Prove that Y \X = Y ∩X ′. Use part (b.) above to conclude that C = Y ∩X ′ is the “largest”

subset of W that is contained in Y and disjoint from X.

Exercise 0.6.37. Prove the second of the Distributive Laws for Sets.

Exercise 0.6.38. Consider any function f : X → Y from a set X to a set Y.

(a.) Prove that f(U ∪ V ) = f(U) ∪ f(V ) for any sets U, V ⊆ X.

(b.) Prove that f(∪i∈IVi) = ∪i∈If(Vi) for any index set I and any sets Vi ⊆ X.

(c.) Prove that f(U ∩ V ) ⊆ f(U) ∩ f(V ) for any sets U, V ⊆ X.

(d.) Prove that f(∩i∈IVi) ⊆ ∩i∈If(Vi) for any index set I and any sets Vi ⊆ X.

(e.) Construct an explicit counterexample to the superset containment f(U ∩ V ) ⊇ f(U) ∩ f(V ).

(f.) Prove that f−1(V ∪W ) = f−1(V ) ∪ f−1(W ) for any sets V,W ⊆ Y.

(g.) Prove that f−1(∪i∈IWi) = ∪i∈If
−1(Wi) for any index set I and any sets Wi ⊆ Y.

(h.) Prove that f−1(V ∩W ) = f−1(V ) ∩ f−1(W ) for any sets V,W ⊆ Y.

(i.) Prove that f−1(∩i∈IWi) = ∩i∈If
−1(Wi) for any index set I and any sets Wi ⊆ Y.

Exercise 0.6.39. Consider any function f : X → Y from a set X to a set Y.

(a.) Prove that V ⊆ f−1(f(V )) for any set V ⊆ X.

(b.) Exhibit sets V ⊆ X and Y and a function f : X → Y such that f−1(f(V )) ̸⊆ V.

(Hint: By Proposition 0.4.53, observe that f : X → Y cannot be injective.)

(c.) Prove that f(f−1(W )) ⊆ W for any set W ⊆ Y.
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(d.) Exhibit sets X and W ⊆ Y and a function f : X → Y such that W ̸⊆ f(f−1(W )).

(Hint: By Proposition 0.4.53, observe that f : X → Y cannot be surjective.)

Exercise 0.6.40. Consider any function f : X → Y from a set X to a set Y.

(a.) Prove that if f−1(f(V )) = V for any set V ⊆ X, then f is injective.

(Hint: If f(x1) = f(x2), then consider the set V = {x1}.)

(b.) Prove that if f(f−1(W )) = W for any set W ⊆ Y, then f is surjective.

(Hint: Consider the set W = Y ; then, use the definition of f(f−1(W )).)

Exercise 0.6.41. Consider any function f : X → Y.

(a.) Prove that if there exists a function g : Y → X such that g ◦ f = idX , then f is injective.

(b.) Prove that if there exists a function g : Y → X such that f ◦ g = idY , then f is surjective.

(c.) Prove that if f ◦ f = idX , then f is bijective.

(d.) Consider the case that f ◦ f ◦ f = f. Prove that f is bijective or provide a counterexample.

Exercise 0.6.42. Given any set X, consider the diagonal function δX : X → X ×X defined by

δX(x) = (x, x) and the diagonal relation ∆X = {(x, x) | x ∈ X} on X. Prove that ∆X = δX(X).



Chapter 1

Essential Topics in Group Theory

Group theory is the study of algebraic structures equipped with associative binary operations that

admit distinguished elements called the multiplicative identity and multiplicative inverses. Common

examples of groups include cyclic groups, lattice groups, Lie groups, symmetry groups, topological

groups, and vector spaces. Groups may be simple to describe and possess uncomplicated arithmetic,

but the structure of certain groups is surprisingly complex: indeed, group theory remains an active

branch of mathematics. One of the most significant results in group theory is the discovery of the

so-called solvable groups by French mathematician Évariste Galois. Crucially, the theory of solvable

groups implies that there is no analog to the Quadratic Formula for polynomials of degree exceeding

four with real coefficients. Group theory is useful in coding theory, counting, number theory, and

symmetries and in various applications to physical sciences, such as biology, chemistry, and physics.

1.1 Groups: Basic Definitions and Examples

We will assume throughout this chapter that G is a nonempty set. Back in Section 0.1.6, we defined

a binary operation on G as a function ∗ : G×G→ G that sends (g1, g2) 7→ g1 ∗ g2. We say that

G is a group with respect to ∗ whenever the following properties hold for the pair (G, ∗).

GP(a.) We have that g1 ∗ (g2 ∗ g3) = (g1 ∗ g2) ∗ g3 for all elements g1, g2, g3 ∈ G, i.e., ∗ is associative.

GP(b.) G admits an element eG ∈ G such that eG ∗ g = g = g ∗ eG for all elements g ∈ G.

GP(c.) Given any element g ∈ G, there exists an element g−1 ∈ G such that g ∗ g−1 = eG = g−1 ∗ g.

Example 1.1.1. Consider the set Z of integers. Observe that (a.) addition of integers is associative;

(b.) the integer 0 satisfies that 0+n = n = n+0 for all integers n; and (c.) for any integer n, there

exists an integer −n such that n+ (−n) = 0 = −n+ n. Consequently, (Z,+) is a group. Crucially,

we use the usual notation of additive inverses in place of the multiplicative notation above.

Example 1.1.2. Consider the set Zn of equivalence classes of integers modulo n. By Proposition

0.4.40, the distinct elements of Zn are given by [r] = {qn+r | q ∈ Z} for each integer 0 ≤ r ≤ n−1,

hence Zn is nonempty. Using modular arithmetic, we may define an associative binary operation

+n on Zn by setting [r1]+n [r2] = [r1+r2]. Of course, we may reduce r1+r2 modulo n by computing

the least non-negative integer x for which r1 + r2 ≡ x (mod n); then, we may view [r1 + r2] as [x],

99
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hence +n is a binary operation on Zn. Considering that addition of integers is associative, +n is

associative; the identity element of Zn is simply [0]; and if 1 ≤ r ≤ n− 1, then the inverse of [r] is

simply [n− r]. Ultimately, this goes to show that (Zn,+n) is a group. Once again, observe that we

have used additive notation in place of the multiplicative notation of arbitrary groups.

Example 1.1.3. Consider any regular 3-gon. We denote by ρk rotation of the regular 3-gon through

the angle −120k degrees for each integer 1 ≤ k ≤ 3. We denote by ϕk reflection of the regular 3-gon

about the vertex k for each integer 1 ≤ k ≤ 3. Consider the set D3 = {ρ1, ρ2, ρ3, ϕ1, ϕ2, ϕ3} of all

symmetry-preserving rotations and reflections of a regular 3-gon. By Exercise 1.12.62, for any pair

of elements x, y ∈ D3, composition y ◦ x is an associative binary operation on D3. Even more, we

have that ρ3 satisfies that x ◦ ρ3 = x = ρ3 ◦ x for all elements x ∈ D3, hence ρ3 is the multiplicative

identity of D3; the rotations ρ1 and ρ2 are multiplicative inverses of one another; and the reflection

ϕk is its own multiplicative inverse for each integer 1 ≤ k ≤ 3. Consequently, we find that (D3, ◦) is
a group under composition: it is typically called the dihedral group of order 6 = 2 · 3.

We say that a group (G, ∗) is abelian if it holds that g1 ∗ g2 = g2 ∗ g1 for all elements g1, g2 ∈ G.

Example 1.1.4. Observe that the group (Z,+) is abelian because addition of integers is commu-

tative. Likewise, for any elements [r1] and [r2] of Zn, we have that

[r1] +n [r2] = [r1 + r2] = [r2 + r1] = [r2] +n [r1].

Consequently, the group (Zn,+n) is also abelian. By Exercise 1.12.62, on the other hand, the group

D3 of Example 1.1.3 is not abelian because we have that ρ1ϕ1 = ϕ2 ̸= ϕ3 = ϕ1ρ1.

Example 1.1.5. Consider the set R of real numbers. Given any integer n ≥ 1, we denote by Rn×n

the collection of all real n× n matrices. Under matrix addition, Rn×n forms a group: the identity

element of Rn×n is the n× n zero matrix, and the inverse of a real n× n matrix A is the real n× n

matrix −A whose (i, j)th entry is simply the (i, j)th entry of A with the opposite sign. Considering

that addition of real numbers is commutative, it follows that (Rn×n,+) is abelian.

Example 1.1.6. Consider the subset GL(n,R) of Rn×n consisting of invertible real n×n matrices.

Under matrix multiplication, GL(n,R) forms a group: the multiplicative identity of GL(n,R) is

the n × n identity matrix, and the multiplicative inverse of an invertible n × n matrix A is A−1.

Considering that matrix multiplication is not commutative, the group (GL(n,R), ·) is not abelian.
We refer to this multiplicative group as the general linear group of size n over the field R.

We refer to the cardinality of the underlying set whose elements define a group as the order of the

group. Observe that the additive group (Zn,+n) of the integers modulo n has order |Zn| = n, and

the dihedral group (D3, ◦) of order six has order |D3| = 6. On the other hand, the additive groups

(Z,+) of integers and (Rn×n,+) of real n×n matrices and the multiplicative group (GL(n,R), ·) of
invertible real n× n matrices have infinitely many elements, hence they each possess infinite order.

Remark 1.1.7. Unfortunately, even if a nonempty set G admits some associative binary operation

∗ : G×G→ G, it is not immediately true that (G, ∗) is a group. Explicitly, multiplication of integers

is an associative binary operation on the integers; the integer 1 satisfies that n · 1 = n = 1 · n for

all integers n; however, the integer 0 admits no multiplicative inverse because it always holds that

n · 0 = 0, and yet, it is not true that 0 = 1. Even if we consider the set Z∗ = Z \ {0} with respect

to integer multiplication, we do not obtain a group because an integer n admits a multiplicative

inverse n−1 in Z∗ if and only if n ·n−1 = 1 if and only if n−1 = 1
n
is an integer if and only if n = ±1.
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1.2 Groups: Basic Properties and Subgroups

We will assume throughout this section that (G, ∗) is a group. Concretely, G is a nonempty set and

∗ : G×G→ G is an associative binary operation defined on G with respect to which

GP(a.) G admits an element eG ∈ G such that eG ∗ g = g = g ∗ eG for all elements g ∈ G and

GP(b.) for each element g ∈ G, there exists an element g−1 ∈ G such that g ∗ g−1 = eG = g−1 ∗ g.

Our primary objective in this section is to explore some immediate properties and to illuminate the

basic structure of groups. We begin by establishing the uniqueness of the identity and inverses.

Proposition 1.2.1 (Uniqueness of Multiplicative Identity and Multiplicative Inverses of a Group).

Given any group (G, ∗), the element eG of the first group property GP(a.) is unique. Even more,

for each element g ∈ G, the element g−1 ∈ G of the second group property GP(b.) is unique.

Proof. We must show that if e is any element of G with the property that e ∗ g = g = g ∗ e for all

elements g ∈ G, then e = eG. Crucially, if this holds, then e ∗ eG = eG = eG ∗ e by assumption and

eG ∗ e = e by definition of eG. But this implies that e = eG ∗ e = e ∗ eG = eG, as desired.

Likewise, we must show that if h is any element of G with the property that g ∗ h = eG = h ∗ g,
then h = g−1. Considering that ∗ is associative and g−1 ∗ g = eG, it follows that

h = eG ∗ h = (g−1 ∗ g) ∗ h = g−1 ∗ (g ∗ h) = g−1 ∗ eG = g−1.

Consequently, we refer to the element eG of GP(a.) as the identity element of G; the element

g−1 of GP(b.) is the inverse of g. Our next result simplifies the task of finding inverses in a group.

Corollary 1.2.2 (Equality of Left- and Right-Inverses in a Group). Consider any element g of any

group (G, ∗). Given any element h ∈ G such that g ∗ h = eG, we have that h ∗ g = eG and h = g−1.

Proof. By Proposition 1.2.1, it suffices to prove that h ∗ g = eG. By hypothesis that g ∗ h = eG, it

follows that (h ∗ g) ∗ (h ∗ g) = h ∗ (g ∗ h) ∗ g = h ∗ eG ∗ g = h ∗ g. Consequently, multiplying both

sides of the above identity (h ∗ g) ∗ (h ∗ g) = h ∗ g by (h ∗ g)−1 yields the result.

Often, we will omit the notation ∗ in G and simply use concatenation, e.g., we will write g1g2
instead of g1 ∗ g2. By definition of a binary operation, for every pair of elements g1, g2 ∈ G, the

product g1g2 lies in G. Consequently, by property GP(b.), g1g2 admits a multiplicative inverse.

Proposition 1.2.3. If G is a group, then (g1g2)
−1 = g−1

2 g−1
1 and (g−1

1 )−1 = g1 for all g1, g2 ∈ G.

Proof. By Corollary 1.2.2, it suffices to verify that (g1g2)(g
−1
2 g−1

1 ) = eG and g−1
1 g1 = eG.

Existence of multiplicative inverses implies that groups enjoy the cancellation property, i.e.,

if g1g2 = g1g3 for any elements g1, g2, g3 ∈ G and G is a group, then it must be the case that g2 = g3.

Likewise, an identity g1g3 = g2g3 implies that g1 = g2. Often, we will invoke this property by using

the expression “cancel on both sides” of an identity instead “multiply both sides by the inverse.”

Given any element g ∈ (G, ∗) and any positive integer n, we may define the n-fold powers

gn = g ∗ g ∗ · · · ∗ g︸ ︷︷ ︸
n times

and g−n = g−1 ∗ g−1 ∗ · · · ∗ g−1︸ ︷︷ ︸
n times

of g, and we adopt the convention that g0 = eG. Under these identifications, we have the following.
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Proposition 1.2.4 (Group Exponent Laws). Consider any group G and any integers m and n.

1.) We have that gmgn = gm+n for any element g ∈ G.

2.) We have that (gm)n = gmn for any element g ∈ G.

3.) If G is abelian, then (g1g2)
n = gn1 g

n
2 for all elements g1, g2 ∈ G.

We leave the proofs of these Group Exponent Laws as Exercise 1.12.14. We point out here the

convention that additive notation is used for abelian groups; in this case, this result is clear since

ng = g + g + · · ·+ g︸ ︷︷ ︸
n times

and −ng = (−g) + (−g) + · · ·+ (−g)︸ ︷︷ ︸
n times

.

Given any nonempty set H ⊆ G, we say that H is a subgroup of G whenever (H, ∗) is itself a
group. Even more, if H is a nonempty proper subset of G, then (H, ∗) is called a proper subgroup

of G in this case. Every group admits a subgroup consisting solely of its identity element {eG}; we
refer to this as the trivial subgroup of G. Generally, there may be other proper subgroups.

Example 1.2.5. Consider the abelian group (Z,+) of integers under addition. Given any integer

n, we may define the collection nZ = {nk | k is an integer} of integer multiples of n.We can readily

verify that (nZ,+) is a subgroup of Z. Explicitly, the additive identity 0 = n · 0 lies in nZ, and for

any pair of integers k and ℓ, we have that nk+ nℓ = n(k+ ℓ) lies in nZ, hence addition constitutes

an associative binary operation on nZ. Observe that the additive inverse of nk is −nk = n(−k).
Example 1.2.6. Consider the dihedral group (D3, ◦) of Example 1.1.3 constructed from the set

D3 = {ρ1, ρ2, ρ3, ϕ1, ϕ2, ϕ3}

of all symmetry-preserving rotations and reflections of a regular 3-gon with respect to composition.

Observe that ρj ◦ρi = ρi+j (mod 3), hence ⟨ρ1⟩ = {ρ1, ρ2, ρ3} is a subgroup of D3: indeed, composition

is an associative binary operation on ⟨ρ1⟩ and every element of ⟨ρ1⟩ has a multiplicative inverse in

⟨ρ1⟩. Even more, ρ3 is the multiplicative identity of D3, so it is the multiplicative identity of ⟨ρ1⟩.
Example 1.2.7. Consider the general linear group GL(n,R) of size n over the field R. Considering
that det(AB) = det(A) det(B) for all n× n matrices, it follows that the subset

SL(n,R) = {A ∈ GL(n,R) | det(A) = 1}

of GL(n,R) inherits the associative binary operation of matrix multiplication. By definition, every

element of SL(n,R) has a multiplicative inverse, and the n×n identity matrix is the multiplicative

identity of SL(n,R), hence it is a subgroup of GL(n,R) called the special linear group.

Remark 1.2.8. We cannot understate the importance of context when discussing the structure of

groups and subgroups. Remark 1.1.7 demonstrates that a nonempty set with an associative binary

operation need not be a group — even if it possesses a multiplicative identity. Likewise, a nonempty

subset of a group is not necessarily a subgroup. Crucially, a subgroup must inherit the same binary

operation as the larger group in which it is contained. Concretely, the group (Rn×n,+) of real n×n
matrices under matrix addition contains GL(n,R) as a subset; however, GL(n,R) is not a subgroup

of Rn×n because the sum of two invertible matrices is not necessarily invertible. Even more, Rn×n

is not a group with respect to matrix multiplication because not all n× n matrices are invertible.
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We will occasionally use the standard notation H ≤ G to denote that H is a subgroup of G, i.e.,

H is a nonempty subset of G that is a group with respect to the group operation of G. Often, it

is convenient to use the following proposition and its two corollary to determine when a nonempty

subset of a group itself constitutes a group with respect to the attendant operation of the group.

Proposition 1.2.9 (Subgroup Test). Given any group (G, ∗), consider any subset H ⊆ G. We have

that (H, ∗) is a subgroup of G if and only if the following three conditions hold.

(a.) H contains the identity element eG of G.

(b.) We have that h1 ∗ h2 ∈ H for all elements h1, h2 ∈ H.

(c.) We have that h−1 ∈ H for all elements h ∈ H.

Proof. Certainly, if the above three conditions hold for H, then in order to establish that (H, ∗) is
a group, we need only verify that ∗ is associative. But this holds by viewing H as a subset of G.

Conversely, suppose that (H, ∗) is a subgroup of G. Condition (b.) holds because H is a group,

hence it suffices to check that conditions (a.) and (c.) are satisfied. By assumption thatH is a group,

it admits an identity element eH . Observe that as elements of G, we have that eHeH = eH = eHeG.

Cancellation on the left in G yields that eH = eG, as desired. Last, for all elements h ∈ H, there

exists a unique element h′ ∈ H such that hh′ = eH = h′h. Considering that eH = eG, it follows that

hh′ = eG, hence Proposition 1.2.2 yields that h′ = h−1. We conclude that h−1 ∈ H.

Corollary 1.2.10 (Two-Step Subgroup Test). Given any group (G, ∗), consider any nonempty set

H ⊆ G. We have that (H, ∗) is a subgroup of G if and only if the following two conditions hold.

(a.) We have that h1 ∗ h2 ∈ H for all elements h1, h2 ∈ H and

(b.) We have that h−1 ∈ H for all elements h ∈ H.

Proof. Clearly, if (H, ∗) is a subgroup of G, then the stated properties of H must hold. Conversely,

if we assume that the second and third conditions of the Subgroup Test hold, then the first condition

holds because we have that eG = h∗h−1 lies in H for all elements h ∈ H, hence H is nonempty.

Corollary 1.2.11 (One-Step Subgroup Test). Given any group (G, ∗), consider any nonempty set

H ⊆ G. We have that (H, ∗) is a subgroup of G if and only if h1 ∗ h−1
2 ∈ H for all h1, h2 ∈ H.

Proof. Once again, if (H, ∗) is a subgroup ofG, then the stated property ofH must hold. Conversely,

by the Subgroup Test, it suffices to demonstrate that the following conditions holds.

(a.) H contains the identity element eG of G.

(b.) We have that h1 ∗ h2 ∈ H for all elements h1, h2 ∈ H.

(c.) We have that h−1 ∈ H for all elements h ∈ H.

We verify condition (a.) by noting that eG = h1h
−1
1 is in H for any element h1 ∈ H. Consequently,

condition (c.) follows because h−1 = eGh
−1 for all elements h ∈ H and eG ∈ H. Last, condition (b.)

holds by using Proposition 1.2.3 and condition (c.) to see that h1 ∗ h2 = h1 ∗ (h−1
2 )−1 ∈ H.
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Caution: the Two-Step Subgroup Test and One-Step Subgroup Test require that we begin with a

nonempty subset H of a group (G, ∗). Consequently, there is an implicit requirement to check that

H is nonempty. Often, it can be readily deduced from the defining properties of H that the identity

element of G lies in H; however, it is possible to prove that H is nonempty in other ways.

Example 1.2.12. Consider the collection RR of real univariate functions f : R → R with domain R.
One can readily verify that (RR,+) is an abelian group with respect to the usual function addition

defined by (f+g)(x) = f(x)+g(x) for all real numbers x (see Exercise 1.12.5). We will demonstrate

that the set C1(R) ⊆ RR of functions f : R → R whose first derivative f ′ is continuous everywhere

constitutes a subgroup of (RR,+) by the One-Step Subgroup Test. Crucially, the identity function

idR : R → R defined by idR(x) = x satisfies that id′
R(x) = 1, hence C1(R) is nonempty. Consequently,

if f, g ∈ C1(R), then (f − g)′(x) = f ′(x)− g′(x) is continuous for all real numbers x.

Before we conclude, we provide an intriguing example to motivate the study of subgroups.

Example 1.2.13. We demonstrate in this example that it is possible to distinguish groups of the

same order according to their subgroups, hence the structure of the subgroups of a group provide

more refined information than the order of a group. Consider the group (Z4,+4) and the set Z2×Z2

with respect to componentwise addition modulo 2. One can readily verify that Z2×Z2 is an abelian

group under componentwise modular arithmetic, hence we cannot distinguish between (Z4,+4) and

Z2 ×Z2 according to commutativity of their elements. Even more, both of these groups have order

four; however, we will demonstrate that these groups are distinct by showing that (Z4,+4) admits

only one non-trivial proper subgroup while Z2 × Z2 admits three non-trivial proper subgroups. By

an abuse of notation, the elements of Z4 are {0, 1, 2, 3} and its Cayley table is as follows.

+4 0 1 2 3

0 0 1 2 3

1 1 2 3 0

2 2 3 0 1

3 3 0 1 2

Concretely, the Cayley table of a group (G, ∗) with n elements is the (n+ 1)× (n+ 1) array whose

(i, 1) and (1, i) entries are the elements gi ∈ G for each integer 2 ≤ i ≤ n+1 and whose (i, j)th entry

is gi ∗gj for each pair of integers 2 ≤ i, j ≤ n+1. Considering that any subgroup H of (Z4,+4) must

contain the identity element 0 and the inverse of any element in H, the only non-trivial subgroup of

(Z4,+4) is H = {0, 2}. On the other hand, observe that Z2 ×Z2 admits the following Cayley table.

(+2,+2) (0, 0) (1, 0) (0, 1) (1, 1)

(0, 0) (0, 0) (1, 0) (0, 1) (1, 1)

(1, 0) (1, 0) (0, 0) (1, 1) (0, 1)

(0, 1) (0, 1) (1, 1) (0, 0) (1, 0)

(1, 1) (1, 1) (0, 1) (1, 0) (0, 0)

Once again, by looking for the identity element (0, 0) in the above table, we obtain three non-trivial

subgroups: namely, they are {(0, 0), (1, 0)}, {(0, 0), (0, 1)} and {(0, 0), (1, 1)}. We conclude that the

order-four abelian groups (Z4,+4) and Z2 × Z2 are distinct; the latter is the Klein four-group.

Consequently, it is possible to distinguish between two groups with the same number of elements

by demonstrating that the two groups do not admit the same number of (proper) subgroups.
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1.3 Cyclic Groups

We continue our exploration into the structure of groups by turning our attention to those groups

that are “simplest” in the following sense. Given any group G and any element g ∈ G, we have that

gn lies in G for any integer n. Even more, these elements naturally give rise to a subgroup of G.

Proposition 1.3.1. Given any group G and any element g ∈ G, the collection ⟨g⟩ = {gn | n ∈ Z}
of integer powers of g forms a subgroup of G called the cyclic subgroup of G with generator g.

Proof. Certainly, the set ⟨g⟩ is nonempty because it contains g0 = eG. Even more, for any elements

gm, gn ∈ ⟨g⟩, we have that gm(gn)−1 = gmg−n = gm−n according to the Group Exponent Laws so

that gm(gn)−1 ∈ ⟨g⟩. We conclude by the One-Step Subgroup Test that ⟨g⟩ is a subgroup of G.

Example 1.3.2. Consider the dihedral group D3 = {ρ1, ρ2, ρ3, ϕ1, ϕ2, ϕ3} of order six. Observe that

the distinct powers of ρ1 are given by ρ1, ρ
2
1, and ρ

3
1. Consequently, we have that ⟨ρ1⟩ = {ρ1, ρ21, ρ31}.

Considering that ρ21 = ρ2 and ρ31 = ρ3, this is the subgroup of D3 consisting of all rotations of the

regular 3-gon. On the other hand, for any reflection ϕk, we have that ϕ
2
k does not affect any change,

hence it is the identity ρ3. Put another way, we have that ⟨ϕk⟩ = {ϕk, ρ3} for each integer 1 ≤ k ≤ 3.

Using additive notation +, the cyclic subgroup generated by an element g of an abelian group

(G,+) is simply ⟨g⟩ = {ng | n ∈ Z}. We have unwittingly already encountered such groups.

Example 1.3.3. Observe that for any integer n, the cyclic subgroup ⟨n⟩ of (Z,+) generated by n

is given by ⟨n⟩ = {. . . ,−2n,−n, 0, n, 2n, . . . } = {nk | k ∈ Z} = nZ, i.e., the integer multiples of n.

Example 1.3.4. Given any positive integer n, we may consider the following subset of Zn.

Z×
n = {[a] ∈ Zn | gcd(a, n) = 1}

Using the usual Arithmetic Modulo n, we may define a multiplicative group operation on Z×
n via

the identification [a][b] = [ab] for each pair of equivalences classes [a], [b] ∈ Z×
n . Crucially, we must

verify that this multiplication is well-defined, i.e., we must prove that if [a], [b] ∈ Z×
n , then [ab] ∈ Z×

n .

By definition of the set Z×
n , we have that [a], [b] ∈ Z×

n if and only if gcd(a, n) = 1 and gcd(b, n) = 1.

Consequently, Bézout’s Identity yields integers u, v, x, and y with ax+ny = 1 and bu+nv = 1. By

multiplying these identities, we obtain 1 = 12 = (ax + ny)(bu + nv) = abux + n(avx + buy + nvy)

so that gcd(ab, n) = 1 by Bézout’s Identity. We conclude that modular multiplication [a][b] = [ab]

is a well-defined associative binary operation on Z×
n for which it holds that [1][a] = [a] = [a][1]

for each equivalence class [a] ∈ Z×
n . Last, the identity ax + ny = 1 implies that ax ≡ 1 (mod n),

hence we conclude that [a][x] = [ax] = [1] = [xa] = [x][a] so that [x] = [a]−1. We refer to Z×
n as the

multiplicative group of units modulo n. By Corollary 3.1.14, it follows that Z×
p is a cyclic group

for each prime number p! Concretely, the reader should verify by inspection that Z×
2 = {1} = ⟨1⟩,

Z3 = {1, 2} = ⟨2⟩, and Z5 = {1, 2, 3, 4} = ⟨2⟩ = ⟨3⟩; we leave the details as part of Exercise 1.12.33.
Conversely, it is possible that Z×

n is cyclic for composite n, hence the primality of n is sufficient but

not necessary for the cyclicity of Z×
n . We refer the reader to Exercise 1.12.34 for further practice.

Remark 1.3.5. If H is a subgroup of G that contains some element g ∈ G, then H contains the

cyclic subgroup ⟨g⟩ because it contains all powers of g by the second property of the Subgroup Test.

Consequently, the cyclic subgroup ⟨g⟩ is in this sense the “smallest” subgroup of G containing g,

hence we may view ⟨g⟩ as the intersection of all subgroups of G containing g (see Exercise 1.12.45).
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We will say that G is a cyclic group if G admits an element g ∈ G such that G = ⟨g⟩; in this

case, we may also specify that the group G is generated by the element g. By definition, the order

of the cyclic subgroup ⟨g⟩ is the (possibly infinite) number of distinct elements of ⟨g⟩. Particularly,
if ⟨g⟩ is finite, then we may define the order of g as the smallest positive integer r = ord(g) such

that gr = eG. Consequently, the distinct elements of ⟨g⟩ are g0, g1, . . . , gr−1 so that ord(g) = #⟨g⟩.

Example 1.3.6. Every nonzero element of the additive group of integers (Z,+) has infinite order.

Even more, every integer n can be written as n · 1 or (−n)(−1), hence (Z,+) = ⟨1⟩ = ⟨−1⟩ is a

cyclic group. We note that the cyclic subgroups nZ are proper for all integers n such that |n| ≥ 2.

Example 1.3.7. Consider the abelian group (Z10,+10) of equivalence classes of Z modulo 10 with

respect to addition modulo 10. Observe that ⟨5⟩ = {0, 5}, hence we have that ord(5) = 2. On the

other hand, we have that ⟨1⟩ = {0, 1, 2, . . . , 9} = ⟨9⟩, hence both 1 and 9 generate (Z10,+10).

Example 1.3.8. Consider the set G = {( 1 n
0 1 ) : n ∈ Z} of all upper-triangular 2× 2 matrices with

integer entries and 1 along the main diagonal. We claim that G is a group with respect to the usual

matrix multiplication. Concretely, observe that for any integers m and n, we have that(
1 m

0 1

)(
1 n

0 1

)
=

(
1 m+ n

0 1

)
so that G is closed under matrix multiplication. Conventionally, any matrix raised to the power of

zero is the identity matrix, hence the identity element of G is the identity matrix. Last, according

to the above calculation, the inverse of any element ( 1 n
0 1 ) of G is simply

(
1 −n
0 1

)
.

We claim that the nonempty subset H = {( 1 n
0 1 ) : n ∈ Z≥0} of G is cyclic. By the above calcu-

lation, if n ≥ 0, then we may view n = n · 1 as the n-fold sum of copies of 1, i.e., H = ⟨( 1 1
0 1 )⟩.

Example 1.3.9. Consider the dihedral group D3 = {ρ1, ρ2, ρ3, ϕ1, ϕ2, ϕ3} of order six. By Example

1.3.2 and Exercise 1.12.62, every subgroup of D3 is cyclic, but D3 is not itself a cyclic group.

Caution: Example 1.3.9 exhibits a non-cyclic group whose proper subgroups are all cyclic, hence

it is not possible to determine the cyclic property of a group based on its subgroups.

Even though the cyclic nature of a group cannot be deduced according to the cyclic property of

its proper subgroups, our next propositions illustrate several important properties of cyclic groups.

Proposition 1.3.10 (Cyclic Groups Are Abelian). Every cyclic group is abelian.

Proof. If G is cyclic, then G admits an element g ∈ G such that G = {gn | n ∈ Z}. Consequently,
for any elements g1, g2 ∈ G, there exist integers n1 and n2 such that g1 = gn1 and g2 = gn2 . By the

Group Exponent Laws, we conclude that g1g2 = gn1gn2 = gn1+n2 = gn2+n1 = gn2gn1 = g2g1.

Corollary 1.3.11 (Non-Abelian Groups Are Non-Cyclic). Every non-abelian group is non-cyclic.

Proof. We note that this is the contrapositive of Proposition 1.3.10.

Theorem 1.3.12 (Structure Theorem for Cyclic Groups). Each subgroup of a cyclic group is cyclic.

Proof. We will assume that G is a cyclic group that is generated by some element g ∈ G. Concretely,

suppose that G = {gn | n ∈ Z}. Consider any subgroup H ⊆ G. Certainly, if H = {eG}, then H is

cyclic. Consequently, we may assume that H admits a non-identity element h ∈ H. By hypothesis



1.3. CYCLIC GROUPS 107

that G is cyclic, there exists an integer n such that h = gn. By the Two-Step Subgroup Test and

the Group Exponent Laws, we must have that h−1 = (gn)−1 = g−n lies in H. Considering that h is

not the identity element of G, we must have that n > 0 or −n > 0, so we may assume without loss

of generality that n > 0. Ultimately, this analysis reveals that the collection S = {i ∈ Z>0 | gi ∈ H}
is nonempty, hence the Well-Ordering Principle guarantees that S admits a smallest element s with

respect to ≤. We will prove in the next paragraph that H = ⟨gs⟩ so that H is cyclic.

By assumption that G is cyclic, if k ∈ H, then there exists an integer m such that k = gm. By

the Division Algorithm, there exist unique integers q and r such that m = qs + r and 0 ≤ r < s.

Consequently, we have that k = gm = gqs+r = gqsgr. By multiplying both sides of this identity (on

the left) by g−qs, we find that gr = g−qsk lies in H. But this is impossible unless r = 0 because

0 ≤ r < s and s is the smallest positive integer such that gs lies in H. We conclude that m = qs so

that every element of H can be written as gqs = (gs)q for some unique integer q.

Corollary 1.3.13. Every subgroup of (Z,+) is of the form nZ for some non-negative integer n.

Corollary 1.3.14. Every subgroup of (Zn,+n) is of the form kZn for some integer 0 ≤ k ≤ n− 1.

By the paragraph preceding Example 1.3.6, the order of an element g of a group G is the smallest

positive integer r = ord(g) such that gr = eG. Our next two results demonstrate that the order of

any generator of a cyclic group determines the order of all other elements of the group.

Lemma 1.3.15. Consider any cyclic group G. If G = ⟨g⟩, then gn = eG if and only if ord(g) | n.
Proof. Certainly, if ord(g) | n, then gn = eG because there exists an integer q such that n = ord(g)q

and the Group Exponent Laws imply that gn = gord(g)q = (gord(g))q = eqG = eG. Conversely, by the

Division Algorithm, there exist unique integers q and r such n = ord(g)q + r and 0 ≤ r < ord(g).

Observe that if r were nonzero, then it would constitute a smaller positive integer than ord(g) with

the property that gr = eqGg
r = (gord(g))qgr = gord(g)qgr = gord(g)q+r = gn = eG — a contradiction.

Corollary 1.3.16. Given any finite-order element g of any group G, if gn = eG, then ord(g) | n.
Proof. Each element g ∈ G generates a cyclic group ⟨g⟩ = {gk | k ∈ Z} with ord(g) elements; thus,

if ord(g) is finite and gn = eG, then ord(g) | n by applying Lemma 1.3.15 with H = ⟨g⟩.
Proposition 1.3.17 (Order of Powers of a Cyclic Generator). Consider any cyclic group G that is

generated by an element g ∈ G. Given any integer n, the order of gn is ord(g)/ gcd(n, ord(g)).

Proof. We denote ord(g) = d. By definition, the order of gn is the smallest positive integer r such

that (gn)r = gnr = eG by the Group Exponent Laws. By Corollary 1.3.16, if gnr = eG, then d | nr,
hence r is the smallest positive integer such that d | nr. Considering that gcd(n, d) divides both

n and d, we seek the smallest positive integer r such that d/ gcd(n, d) divides nr/ gcd(n, d). By

Bézout’s Identity, the integers d/ gcd(n, d) and n/ gcd(n, d) are relatively prime, hence Euclid’s

Lemma yields that d/ gcd(n, d) divides r so that r ≥ d/ gcd(n, d) > 0 and r = d/ gcd(n, d).

We conclude this section with the following corollary that allows us to determine every generator

of a cyclic group using only one known generator and the order of the group.

Corollary 1.3.18 (Generators of a Cyclic Group). Consider any cyclic group G generated by g ∈ G.

Every group generator of G is of the form gn for some integer n such that gcd(n, ord(g)) = 1.

Proof. By Proposition 1.3.17, for any integer n such that gcd(n, ord(g)) = 1, we have that ord(gn)

is ord(g); thus, we conclude that gn generates G. We leave the converse as Exercise 1.12.43.
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1.4 Complex Numbers as a Group Under Multiplication

Complex numbers arise naturally as solutions to some polynomials with real coefficients. Explicitly,

if x is a real number, then x2 ≥ 0, hence the quadratic equation x2 + 1 = 0 in the variable x does

not admit any real solutions since we have that x2+1 ≥ 1 for any real number x. Consequently, we

may assume that there exists some solution i of the quadratic equation x2+1 = 0 so that i2+1 = 0.

Carrying out the algebra as usual, we find that i2 = −1 so that i =
√
−1 taking the positive square

root. Crucially, our assumption that such a root i of the real univariate polynomial x2+1 exists and

obeys the usual arithmetic of real numbers holds by the Fundamental Theorem of Field Theory.

We define the complex numbers as the set of all real linear combinations of 1 and i

C = R⟨1, i⟩ = {a+ bi | a, b ∈ R and i2 = −1}.

Consequently, we may view i = 0+1i itself as a complex number. We refer to the real number a of

the complex number a+ bi as the real part of a+ bi; the real number b is the imaginary part of

a+ bi. Complex numbers admit a notion of addition that allow us to view C as the two-dimensional

real vector space C = R⟨1, i⟩. Explicitly, we define (a+ bi) + (c+ di) = (a+ b) + (c+ d)i according

to usual addition of vectors with respect to a basis. Consequently, the additive identity element of

C is 0 + 0i. We may also define multiplication of complex numbers by “foiling” the expression

(a+ bi)(c+ di) = (ac− bd) + (ad+ bc)i.

We note that multiplication of complex numbers is associative, distributive, and commutative simply

because multiplication of real numbers is associative, distributive, and commutative. Even more,

we can readily verify that the multiplicative identity of C is 1 + 0i. Last, if a and b are nonzero

real numbers, then a+ bi and a− bi are nonzero complex numbers with (a+ bi)(a− bi) = a2 + b2.

Consequently, it follows that every nonzero complex numbers a+ bi admits a multiplicative inverse

(a+ bi)−1 =
a− bi

a2 + b2
=

a

a2 + b2
− b

a2 + b2
i.

Proposition 1.4.1. Consider the sets C and C∗ = C \ {0 + 0i} of (nonzero) complex numbers.

1.) (C,+) is an abelian group under complex addition with identity element 0 + 0i.

2.) (C∗, ·) is an abelian group under complex multiplication with identity element 1 + 0i.

We refer to the complex number a − bi as the complex conjugate of a + bi and to the real

number
√
a2 + b2 = (a+bi)(a−bi) as the modulus of a+bi. Often, the literature uses the notation

z = a+ bi with complex conjugate z̄ = a− bi and modulus |z| =
√
a2 + b2. We will do the same.

Proposition 1.4.2. Consider any complex number z = a+ bi for some real numbers a and b.

1.) We have that |z̄| = |z| and |z|2 = zz̄.

2.) We have that
∣∣∣z
c

∣∣∣ = |z|
|c|

for all nonzero real numbers c.

3.) We have that z−1 =
z̄

|z|2
and |z−1| = 1

|z|
if and only if one of a or b is nonzero.
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Graphically, complex numbers can be realized via their algebraic structure as a two-dimensional

real vector space C = R⟨1, i⟩ ∼= R×R. Consequently, we may identify the complex number z = a+bi

with the point (a, b) in the Cartesian plane whose x-axis corresponds to the real part of z and whose

y-axis corresponds to the imaginary part of z. Using the polar coordinates parametrization of the

Cartesian plane R× R, we obtain the polar form for the complex numbers.

Algorithm 1.4.3 (Polar Form of a Complex Number). Consider any complex number z = a + bi

for some real numbers a and b. Complete the following steps to obtain the polar form of z.

1.) Graph and plot the point (a, b) in the Cartesian plane R× R. Observe that if one of the real

numbers a or b is zero, then the point (a, b) lies on one of the coordinate axes.

2.) Compute the modulus r = |z| =
√
a2 + b2 of the complex number z = a+ bi.

3.) Compute the polar angle θ according to the following formula.

θ =


tan−1

(
b
a

)
if a is nonzero and (a, b) lies in QI

tan−1
(
b
a

)
+ π if a is nonzero and (a, b) lies in QII or QIII

tan−1
(
b
a

)
+ 2π if a is nonzero and (a, b) lies in QIV

4.) Ultimately, the polar form of z = a+ bi is z = r cos(θ) + ri sin(θ) or z = r cis(θ).

Example 1.4.4. Consider the complex number z =
√
2− i

√
2.

1.) Observe that the point (
√
2,−

√
2) lies in QIV of the Cartesian plane.

2.) We obtain the modulus r = |z| =
√
2 + 2 = 2 of the complex number z =

√
2− i

√
2.

3.) We obtain the polar angle θ = tan−1(1) + 2π = −π
4
+ 2π = 7π

4
.

4.) Ultimately, we obtain the polar form z =
√
2− i

√
2 = 2 cos

(
7π
4

)
+ 2 sin

(
7π
4

)
= 2 cis

(
7π
4

)
.

Example 1.4.5. Conversely, if we begin with the polar form of a complex number z =
√
3 cis

(
2π
3

)
,

then it follows by direct substitution that z =
√
3 cos

(
2π
3

)
+ i sin

(
2π
3

)
= −

√
3
2
+ 3

2
i.

Even more, the polar representation can be the most efficient way to multiply complex numbers.

We leave the proof of the following proposition as Exercise 1.12.53 for the reader.

Proposition 1.4.6. We have that r1 cis(θ1) · r2 cis(θ2) = r1r2 cis(θ1 + θ2).

Corollary 1.4.7 (De Moivre’s Theorem). We have that [r cis(θ)]n = rn cis(nθ) for an integer n ≥ 0.

Proof. Use the Principle of Ordinary Induction with n ≥ 0. Proposition 1.4.6 is the base case.

Corollary 1.4.8. We have that |z1z2| = |z1||z2| for all complex numbers z1 and z2.

Corollary 1.4.9. We have that |zn| = |z|n for all complex numbers z and all integers n.
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Example 1.4.10. Crucially, De Moivre’s Theorem makes quick work of exponentiation of complex

numbers that would otherwise require the Binomial Theorem ad nauseam. Explicitly, if we wish to

compute (
√
2− i

√
2)7, then we simply recognize that z =

√
2− i

√
2 = 2 cis

(
7π
4

)
by Example 1.4.4

so that De Moivre’s Formula gives z7 = (
√
2− i

√
2)7 = 27 cis

(
49π
4

)
= 128 cis

(
π
4

)
= 64(

√
2 + i

√
2).

Consider the collection T of all complex numbers with unit modulus

T = {z ∈ C : |z| = 1}.

Crucially, observe that a complex number z = a + bi lies in T if and only if
√
a2 + b2 = |z| = 1 if

and only if a2 + b2 = 1 if and only if the representation of (a, b) as a point in the polar plane lies on

the unit circle. By Corollary 1.4.8, if |z1| = 1 and |z2| = 1, then |z1z2| = 1, hence we have that z1z2
lies in T for all elements z1, z2 ∈ T. Even more, if |z| = 1, then |z−1| = 1 by Proposition 1.4.2, hence

z−1 lies in T for all elements z ∈ T. By the Two-Step Subgroup Test, we conclude the following.

Proposition 1.4.11. Consider the multiplicative group C∗ of nonzero complex numbers. We have

that T = {z ∈ C : |z| = 1} is a subgroup of (C∗, ·) that is aptly called the circle group.

Recall that a root of a polynomial anx
n + · · ·+ a1x+ a0 with complex coefficients a0, a1, . . . , an

is a complex number z such that anz
n + · · · + a1z + a0 = 0. Even though it is a classical theorem

of algebra, the following is typically proved using techniques from complex analysis. Consequently,

we will not attempt in this course to supply any justification ourselves; we will take it for granted.

Theorem 1.4.12 (Fundamental Theorem of Algebra). Every univariate polynomial with positive

degree n and complex coefficients admits exactly n (not necessarily distinct ) complex roots.

Consequently, the polynomial equation z3 = 1 has exactly three complex solution. Certainly,

one solution is simply z = 1 + 0i; however, the other two solutions have nonzero imaginary part.

Explicitly, we may factor x3− 1 = (x− 1)(x2+x+1) such that x2+x+1 has no real roots because

the discriminant b2 − 4ac = 1− 4(1)(1) = −3 of the Quadratic Formula is negative. Generally, for

any positive integer n, we refer to the roots of the polynomial xn − 1 as the nth roots of unity.

Proposition 1.4.13 (Roots of Unity). Given any positive integer n, the complex numbers cis
(
2kπ
n

)
for each integer 0 ≤ k < n are the nth roots of unity; they form a cyclic subgroup of the circle group.

Proof. By the Fundamental Theorem of Algebra, we need only demonstrate that cis
(
2kπ
n

)n
= 1 for

each integer 0 ≤ k ≤ n− 1: indeed, for any pair of integers 0 ≤ i < j ≤ n− 1, we have that cis
(
2iπ
n

)
and cis

(
2jπ
n

)
are distinct. Observe that cis

(
2kπ
n

)n
= cis

(
2knπ
n

)
= cis(2kπ) = 1 holds by De Moivre’s

Theorem. Last, the nth roots of unity form a cyclic subgroup of the circle group T once again by

De Moivre’s Theorem because cis
(
2kπ
n

)
= cis

(
2π
n

)k
for each integer 0 ≤ k ≤ n− 1.

We refer to any generator of the cyclic subgroup Un of T consisting of the nth roots of unity as

a primitive nth root of unity. By Propositions 1.4.13 and 1.3.18, we obtain the following.

Corollary 1.4.14 (Generators of the Roots of Unity). Given any positive integer n and any nonzero

integer k, we have that cis
(
2kπ
n

)
generates the group of nth roots of unity if and only if gcd(k, n) = 1.

We encourage the reader to attempt Exercises 1.12.47, 1.12.48, and 1.12.49 for a very interesting

exploration into the geometry of the cyclic group Un consisting of the nth roots of unity.

https://brilliant.org/wiki/binomial-theorem-n-choose-k/
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1.5 Permutations and the Symmetric Group on n Letters

Given any nonempty setX, consider the collection of bijective functions f : X → X. Conventionally,

the Fraktur “S” with subscript X is used to denote this set. Explicitly, we have that

SX = {f : X → X | f is injective and surjective}.

Certainly, the identity function idX : X → X defined by idX(x) = x for each element x ∈ X is a

bijection, hence SX is nonempty. Corollary 0.1.95 ensures that for any pair of bijections f : X → X

and g : X → X, the composite function f ◦ g : X → X is a bijection, hence function composition is

an associative binary operation on SX . Last, given any bijection f : X → X, Proposition 0.1.102

demonstrates the existence of a unique bijection f−1 : X → X such that f ◦f−1 = idX = f−1◦f.We

conclude that (SX , ◦) is a group called the symmetric group on the set X. Each permutation

of the elements of X is a bijection f : X → X, hence SX is the group of permutations of X.

Observe that if X is finite with elements x1, x2, . . . , xn, then the function f : X → {1, 2, . . . , n}
defined by f(xi) = i for each integer 1 ≤ i ≤ n is a bijection. Consequently, to study permutation

groups of finite sets, we may focus our attention on the permutation groups of [n] = {1, 2, . . . , n}
for each positive integer n.We refer to the group S[n] as the symmetric group on n letters. Out

of desire for convenience, we adopt the commonplace shorthand Sn. Conventionally, the elements

of Sn are denoted by Greek letters such as sigma σ and tau τ ; in particular, the identity function

on Sn is denoted by the Greek letter iota ι. Composition of functions σ ◦ τ is typically abbreviated

by concatenation στ ; the product στ is read right to left (as opposed to left to right) since we are

dealing with functions. Our first result concerning the symmetric group on n letters is the following.

Proposition 1.5.1. We have that |Sn| = n! = n(n− 1)(n− 2) · · · 2 · 1.

Proof. By definition, the elements of Sn are bijections σ : [n] → [n]. Each bijection σ is uniquely

determined by its images σ(1), σ(2), . . . , σ(n). Consequently, we may construct a bijection from [n]

to itself by specifying the image σ(i) of each of the integers 1 ≤ i ≤ n in order. Certainly, there

are at first n distinct choices for the value of σ(1). Once this value has been specified, there are

n−1 distinct choices for the value of σ(2) that differ from σ(1). Once both σ(1) and σ(2) have been

specified, there are n− 2 distinct choices for the value of σ(3) that differ from both σ(1) and σ(2).

Continuing in this manner, there are n− i+ 1 distinct choices for the value of σ(i) that differ from

σ(1), σ(2), . . . , σ(i − 1) for each integer 1 ≤ i ≤ n. By the Fundamental Counting Principle, there

are
∏n

i=1(n− i+ 1) = n(n− 1)(n− 2) · · · 2 · 1 = n! distinct bijections from [n] to itself.

By Exercise 0.6.39, every element σ of Sn is uniquely determined by σ(1), σ(2), . . . , σ(n), hence

we may visualize σ as the following 2× n array by listing σ(i) beneath each integer 1 ≤ i ≤ n.(
1 2 · · · n

σ(1) σ(2) · · · σ(n)

)
Using the notation σn to denote the n-fold composite function σ ◦ · · · ◦ σ of σ with itself n times,

we have that σ2(i) = (σ ◦ σ)(i) = σ(σ(i)) for each integer 1 ≤ i ≤ n, so we may build upon this

array to list the image σ2(i) of σ(i) under σ beneath σ(i) for each integer 1 ≤ i ≤ n as follows. 1 2 · · · n

σ(1) σ(2) · · · σ(n)

σ2(1) σ2(2) · · · σ2(n)



https://brilliant.org/wiki/fundamental-counting-principle/
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Continuing in this manner, each of the integers 1 ≤ i ≤ n must eventually appear in the ith column

twice because the integers i, σ(i), σ2(i), . . . , σn(i) cannot all be distinct. Let ri denote the first row of

the ith column for which it holds that σri(i) = i, i.e., ri is the smallest positive integer not exceeding

n for which the integers i, σ(i), . . . , σri−1(i) are all distinct. Observe that the columns of the resulting

array allow us to easily read off the consecutive integers i, σ(i), σ2(i), . . . , σri−1(i). Considering that

σ(σri−1(i)) = σri(i) = i, it follows that i, σ(i), σ2(i), . . . , σri−1(i) constitute a cycle; we will refer to

the positive integer ri as the length of the cycle (i, σ(i), σ2(i), . . . , σri−1(i)), and we will say that the

cycle itself is an ri-cycle. Cycles of length two are commonly called transpositions. By definition,

the order of a cycle as an element of the permutation group Sn is its length, i.e., if σ is an ri-cycle,

then ord(σ) = ri. Conventionally, cycles are written without commas, but we will use them when

convenient. We will also say that two cycles (a1, a2, . . . , ak) and (b1, b2, . . . , bℓ) are disjoint so long

as the entries ai and bj are pairwise distinct for all pairs of integers 1 ≤ i ≤ k and 1 ≤ j ≤ ℓ.

Example 1.5.2. We have already encountered the symmetric groupS3 on three letters in a different

guise. Consider the dihedral group D3 = {ρ1, ρ2, ρ3, ϕ1, ϕ2, ϕ3} of order six whose elements ρk are

the rotations about an angle of −120k degrees and whose elements ϕk are the reflections about the

vertex k of a regular 3-gon. Going back to the main example of this section, we have the following.

ρ1 =

(
1 2 3

3 1 2

)
ρ2 =

(
1 2 3

2 3 1

)
ρ3 =

(
1 2 3

1 2 3

)

ϕ1 =

(
1 2 3

1 3 2

)
ϕ2 =

(
1 2 3

3 2 1

)
ϕ3 =

(
1 2 3

2 1 3

)
Considering that ρ3(i) = i for each integer 1 ≤ i ≤ 3, it follows that ρ3 is the identity element of

S3. Carrying out the process of the previous paragraph, we obtain the cycles of S3. Generally, the

identity permutation ι is a cycle of length one, but this can be verified here by looking at ρ3 above.

Each of the other above permutations is not a cycle because the entries of some column are distinct.

Consequently, we must apply the permutations until each column has a repeated integer.
1 2 3

3 1 2

2 3 1

1 2 3



1 2 3

2 3 1

3 1 2

1 2 3


(
1 2 3

1 2 3

)

1 2 3

1 3 2

1 2 3

 1 2 3

3 2 1

1 2 3

 1 2 3

2 1 3

1 2 3


Consequently, the permutation ρ1 is the 3-cycle (132); the permutation ρ2 is the 3-cycle (123); the

permutation ϕ1 is the 2-cycle (23); the permutation ϕ2 is the 2-cycle (13); and the permutation ϕ3

is the 2-cycle (12). We will explore this phenomenon when we discuss general dihedral groups. By

Exercise 1.12.62, we have that ϕ1ρ1 ̸= ρ1ϕ1, hence the symmetric group is not necessarily abelian.



1.5. PERMUTATIONS AND THE SYMMETRIC GROUP ON n LETTERS 113

Example 1.5.3. Consider the following permutation σ in two-line notation.

σ =

(
1 2 3 4 5 6 7 8

2 5 8 4 1 7 6 3

)
Computing the disjoint cycles of σ amounts to building upon the above array row-by-row until each

of the integers 1 ≤ i ≤ 8 appears in the ith column twice. Explicitly, we have the following array.
1 2 3 4 5 6 7 8

2 5 8 4 1 7 6 3

5 1 3 4 2 6 7 8

1 2 8 4 5 7 6 3


Consequently, the disjoint cycles of σ are (125), (38), (4), and (67). Even though we have used two-

line notation to express most permutations up to this point, it is occasionally most convenient to

adopt the one-line notation of a permutation σ by specifying all of its disjoint cycles. Explicitly,

in one-line notation, we may write σ = (125)(38)(4)(67). Cycles are by definition expressed in one-

line notation. Even more, the following two propositions demonstrate that it is possible to find the

one-line notation for any permutation and that the representation of a permutation as a product of

disjoint cycles is unique up to a rearrangement of the non-trivial cycles appearing in the product.

Theorem 1.5.4 (Cycle Decomposition Theorem). Every permutation is a product of disjoint cycles.

Proof. Given any positive integer n and any permutation σ of [n], observe that 1, σ(1), . . . , σn(1)

cannot all be distinct. Consequently, there exists an integer 1 ≤ r1 ≤ n − 1 such that σr1(1) = 1;

the integers 1, σ(1), . . . , σr1−1(1) are distinct; and σ1 = (1, σ(1), . . . , σr1−1(1)) is a cycle of length r1.

Consider the smallest integer i2 that does not appear as an entry of σ1. Once again, the integers

i2, σ(i2), . . . , σ
n(i2) cannot all be distinct, so there must be an integer 1 ≤ r2 ≤ n − 1 such that

σr2(i2) = i2. Like before, we obtain a cycle σ2 = (i2, σ(i2), . . . , σ
r2−1(i2)) of length r2. Crucially, we

note that σ1 and σ2 are disjoint: indeed, if it were that σ
i(1) = σj(i2) for some integers 0 ≤ i ≤ r1−1

and 0 ≤ j ≤ r2−1, then it would follow that σr2−j+i(1) = σr2(i2) = i2 so that i2 appears as an entry

of σ1 — a contradiction. Continuing in this manner, we may construct disjoint cycles σ1, σ2, . . . , σk
such that every element of [n] lies in one and only one cycle σi and σ = σ1 · · ·σk.

Proposition 1.5.5 (Disjoint Cycles Commute). We have that στ = τσ for disjoint cycles σ and τ.

Proof. Consider any integer 1 ≤ i ≤ n. Crucially, we recall that σ(i) = i if and only if i does not

appear in the one-line notation for σ. Observe that if σ and τ are disjoint cycles, then τ(i) cannot

be an entry in the one-line notation for σ, hence we have that στ(i) = τ(i) = τσ(i). Consequently,

it suffices to consider the case that i appears in the one-line notation for σ. Consider the entry j of

σ such that σ(i) = j in one-line notation. By assumption that σ and τ are disjoint cycles, neither i

nor j appears in the one-line notation for τ, hence we have that τ(i) = i and τ(j) = j. We conclude

therefore that στ(i) = σ(i) = j = τ(j) = τσ(i). Our proof is complete by the Law of Excluded

Middle since every integer 1 ≤ i ≤ n either appears in the one-line notation for σ or not.

Corollary 1.5.6 (Fundamental Theorem of Permutations). Every permutation can be written as a

product of disjoint cycles in a manner that is unique up to arrangement of the cycles in the product.
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Consequently, we may refer to the representation σ = σ1 · · · σk of a permutation σ as a product of

disjoint cycles σ1, . . . , σk as the cycle decomposition of σ. We note that Examples 1.5.2 and 1.5.3

and the preceding exposition provide an illustration of the Fundamental Theorem of Permutations

and detail the general process of constructing the cycle decomposition of a permutation. We devote

the remainder of this section to demonstrating the power of the Cycle Decomposition Theorem.

Proposition 1.5.7 (Order of a Permutation). Given any permutation σ with cycle decomposition

σ = σ1 · · ·σk, let ri denote the length of the cycle σi. We have that ord(σ) = lcm(r1, . . . , rk).

Proof. By Proposition 1.5.5, the disjoint cycles σ1, . . . , σk commute, hence we have that

ord(σ) = ord(σ1 · · · σk) = min{r ≥ 1 | (σ1 · · ·σk)r = ι} = min{r ≥ 1 |σr
1 · · ·σr

k = ι}.

We claim that σr
1 · · ·σr

k = ι if and only if σr
i = ι for each integer 1 ≤ i ≤ k. Certainly, if σr

i = ι for

each integer 1 ≤ i ≤ k, then σr
1 · · ·σr

k = ι. Conversely, if σr
i ̸= ι for some integer 1 ≤ i ≤ k, then

σr
1 · · ·σr

k ̸= ι because the cycles σ1, . . . , σk are disjoint. Consequently, we conclude that

ord(σ) = min{r ≥ 1 |σr
i = ι for each integer 1 ≤ i ≤ k}

= min{r ≥ 1 | ord(σi) = ri divides r for each integer 1 ≤ i ≤ k} = lcm(r1, . . . , rk)

by Corollary 1.3.16 and the definition of the least common multiple preceding Exercise 0.6.31.

Definition 1.5.8. Given any permutation σ with cycle decomposition σ = σ1 · · ·σk such that σi is

an ri-cycle for each integer 1 ≤ i ≤ k and r1 ≤ · · · ≤ rk, the cycle type of σ is (r1, . . . , rk).

Example 1.5.9. Consider any permutation σ with disjoint cycles (125), (38), (4), and (67). By the

Fundamental Theorem of Permutations, its cycle decomposition is given by σ = (125)(38)(4)(67),

hence we have that ord(σ) = lcm(3, 2, 1, 2) = lcm(6, 1, 2) = lcm(6, 2) = 6 by Proposition 1.5.7. By

definition, the cycle type of σ is (1, 2, 2, 3) with the cycle lengths listed in ascending order.

Computing the inverse of a permutation σ from its cycle decomposition σ = σ1 · · ·σk is delight-

fully simple: indeed, if σi has length ri, then σiσ
ri−1
i = σri

i = ι = σri−1
i σi. Consequently, we have

that σ−1
i = σri−1

i . Considering that disjoint cycles commute, we obtain the following proposition.

Proposition 1.5.10 (Inverse of a Permutation). Given any permutation σ with cycle decomposition

σ = σ1 · · ·σk and cycle type (r1, . . . , rk), we have that σ−1 = σr1−1
1 · · ·σrk−1

k .

Ultimately, Proposition 1.5.10 makes small work of the matter of finding inverses of permutations

written in cycle decomposition: crucially, observe that (a1, . . . , ak)
−1 = (a1, ak, ak−1, . . . , a3, a2).

Example 1.5.11. Consider any permutation σ with cycle decomposition σ = (125)(38)(4)(67). By

the preceding paragraph, we have that (125)−1 = (125)2 = (152), (38)−1 = (38), and (67)−1 = (67).

Consequently, by Proposition 1.5.10, we conclude that σ−1 = (152)(38)(67).

We refer to any permutation σ of order two (so that σ2 = ι) as an involution.

Corollary 1.5.12 (Cycle Decomposition of an Involution). Given any permutation σ, we have that

σ is an involution if and only if the cycle decomposition of σ is a product of disjoint transpositions.

Proof. Combine the Fundamental Theorem of Permutations and Proposition 1.5.7.
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Conversely, we may find the two-line notation from the cycle decomposition of a permutation.

Algorithm 1.5.13. Consider any permutation σ with cycle decomposition σ1 · · ·σk.

1.) Find the largest positive integer n lying in some cycle σi.

2.) Build a 2× n array with the integers 1, 2, . . . , n listed in ascending order in the first row.(
1 2 · · · n

)
3.) Begin to fill the space below the integer 1 by first locating the integer 1 in some cycle σi1 . Use

the rule that if 1 is immediately followed by a right parenthesis, then σ(1) is the integer that

begins the cycle σi1 ; otherwise, σ(1) is the integer that immediately follows 1 in the cycle σi1 .

4.) Repeat the above step until the integers σ(1), σ(2), . . . , σ(n) are all found.

Example 1.5.14. Consider the permutation σ = (135)(48)(276). Observe that the largest positive

integer n lying in some cycle is n = 8. Consequently, we will build the two-line notation of σ from

the 2× 8 array with the integers 1, 2, . . . , 8 listed in ascending order in the first row.(
1 2 3 4 5 6 7 8

)
Observe that 1 lies in the cycle (135); it is immediately followed by 3, hence we have that σ(1) = 3.

Observe that 2 lies in the cycle (276); it is immediately followed by 7, hence we have that σ(2) = 7.

Observe that 3 lies in the cycle (135); it is immediately followed by 5, hence we have that σ(3) = 5.

Observe that 4 lies in the cycle (48); it is immediately followed by 8, hence we have that σ(4) = 8.

Observe that 5 lies in the cycle (135); it is immediately followed by a right parenthesis, hence we

have that σ(5) = 1. Continuing in this manner, we obtain the two-line notation for σ.(
1 2 3 4 5 6 7 8

3 7 5 8 1 2 6 4

)
Unfortunately, the cycle decomposition of a permutation is not typically readily available; rather,

for a product of (not necessarily disjoint) cycles, then we may use the following algorithm that gen-

eralizes the method of Algorithm 1.5.13 to find the two-line notation for the resulting permutation.

Algorithm 1.5.15. Consider any product σ1 · · ·σk of (not necessarily disjoint) cycles σ1, . . . , σk.

1.) Find the largest positive integer n lying in some cycle σi.

2.) Build a 2× n array with the integers 1, 2, . . . , n listed in ascending order in the first row.(
1 2 · · · n

)
3.) Begin to fill the space below the integer 1 by first locating the integer 1 in the cycle σi1 that

is farthest to the right among all of the cycles in the product σ1 · · · σk. Use the rule that if 1

is immediately followed by a right parenthesis, then 1 maps to the integer bi1 that begins σi1 ;

otherwise, 1 maps to the integer ni1 that immediately follows 1 in σi1 .
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4.) Locate the integer bi1 or ni1 in the cycle that is farthest to the right among the cycles in the

product σ1 · · ·σi1−1; then, repeat the third step. Or if i1 = 1, then σ(1) = bi1 or σ(1) = ni1 .

5.) Repeat the third and fourth steps until it is not possible; the last integer found is σ(1).

6.) Repeat the above four steps until the integers σ(1), σ(2), . . . , σ(n) are found.

One useful way to think about and to understand the mechanics of this algorithm is that function

composition is read from right to left. Considering that each cycle is itself a permutation, in order

to find the image of i under the composite function σ1 · · ·σk, we follow the image of i under the

successive composite functions σk, σk−1σk, etc., up to σ1 · · ·σk. Further, if the integer σi(i) does not
appear in σi+1, then σi+1σi(i) = σi(i), hence we must only consider the cycle farthest to the right

that contains the integer under consideration since all cycles that do not contain σi(i) will fix σi(i).

Example 1.5.16. We will write the permutation σ = (134)(45)(14)(23) of S5 in two-line notation

using Algorithm 1.5.15. We find that 1 maps to 4; then, 4 maps to 5; and finally, 5 does not appear

in any cycle left of (45), so it must be the case that σ(1) = 5. We find next that 2 maps to 3; then,

3 maps to 4; and there are no permutations left of (134), so it must be the case that σ(2) = 4. We

find next that 3 maps to 2 in the last cycle, and 2 does not appear in any cycle to the left of (23),

so it must be the case that σ(3) = 2. We find next that 4 maps to 1; then, 1 maps to 3; and there

are no permutations to the left of (134), so it must be the case that σ(4) = 3. Last, we find that 5

maps to 4; then, 4 maps to 1; and there are no permutations to the left of (134), so it must be the

case that σ(5) = 1. We conclude therefore that σ can be written in two-line notation as follows.(
1 2 3 4 5

5 4 2 3 1

)
Often, it is advantageous to omit the cycles of length one when describing a permutation via its

cycle decomposition. Concretely, the permutation σ = (123) can be viewed as the 3-cycle(
1 2 3

2 3 1

)
in S3 or as the permutation τ in Sn for any integer n ≥ 3 that acts as σ on the subset {1, 2, 3} and

acts as the identity on the subset {4, . . . , n}. Consequently, a permutation is uniquely determined by

its cycle decomposition (excluding 1-cycles) regardless of the symmetric group to which it belongs.

Based on this observation, we may view any permutation σ ∈ Sn as the permutation τ ∈ Sk such

that τ(i) = σ(i) for each integer 1 ≤ i ≤ n and τ(j) = j for each integer n + 1 ≤ j ≤ k. We will

typically take care to specify the symmetric group Sn in the context of a permutation σ only when

we consider the two-line notation and not as it pertains to the cycle decomposition. We conclude

with one of the most important consequences of this convention in the following proposition.

Proposition 1.5.17 (Symmetric Groups Are Non-Abelian). If n ≥ 3, then Sn is not abelian.

Proof. Consider the cycles σ = (12) and τ = (13) in S3. By the paragraph above, we may view σ

and τ as elements of Sn for every integer n ≥ 3. Considering that στ = (12)(13) = (132) is not

equal to τσ = (13)(12) = (123), we conclude that Sn is not abelian for any integer n ≥ 3.
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1.6 Rigid Motions and Dihedral Groups

Recall that a polygon is a two-dimensional object consisting of straight line segments that intersect

to form a closed and bounded region in the plane. Common examples of polygons include triangles,

rectangles, and stars. Each intersection point of a pair of straight line segments is a vertex of the

polygon. Particularly, triangles have three vertices; rectangles have four vertices; and stars have

five vertices. We will say that a polygon is regular if and only if its sides have the same length and

the (interior) angles formed by the intersections of any two sides have the same measure. Conse-

quently, triangles and rectangles are not necessarily regular polygons; rather, equilateral triangles

and squares are both examples of regular polygons. We will henceforth refer to a (regular) polygon

with n vertices as a (regular) n-gon. Under this convention, an (equilateral) triangle is a (regular)

3-gon; a (square) rectangle is a (regular) 4-gon; a (regular) pentagon is a (regular) 5-gon; etc.

Rigid motions of a polygon are those operations that we can perform on a polygon without

altering the distance between any two vertices of the polygon. For instance, if we have a square in

the plane, then we may shift each of the vertices of the square any distance north, south, east, or

west without disturbing the distances between any of the vertices of the square; however, we cannot

move just one vertex any nonzero distance north, south, east, or west without altering its distance

from another vertex. Put another way, translation of a polygon is a rigid motion.

We will fix our attention throughout this section on two specific rigid motions of any regular

n-gon. Each of the n vertices of a regular n-gon lies on the circumference of a circle. Consequently,

for any integer 1 ≤ k ≤ n, the rotation of a regular n-gon through an angle of 360k/n degrees

yields a copy of the regular n-gon with the ith vertex in place of the (i + k)th vertex (modulo n).

Pictorially, we may visualize this with the rotations of a regular 3-gon (i.e., an equilateral triangle).

1

3 2

3

2 1

2

1 3

1

3 2

rotate −120◦ rotate −120◦ rotate −120◦

Each rotation is clockwise through an angle equal to the common measure of each exterior angle

of the n-gon. Consequently, if we perform n rotations, then we will wind up with the original

arrangement of the vertices of the n-gon. Put another way, the rotations of a regular n-gon through

an angle of 360k/n degrees correspond to the permutations of the regular n-gon that move vertex

i to vertex i+ k (modulo n). Explicitly, if we return to our example, we have the following.

1

3 2

3

2 1

2

1 3

1

3 2

(
1 2 3

2 3 1

) (
1 2 3

3 1 2

) (
1 2 3

1 2 3

)

On the other hand, a reflection of a regular n-gon about a vertex k is a permutation of the

vertices of the regular n-gon that fixes the vertex k and swaps some other vertices (depending upon

the parity of n). Going back to our example once more, there are three possible reflections.
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1

3 2

1

2 3

1

3 2

3

1 2

1

3 2

2

3 1

(
1 2 3

1 3 2

)
reflect about 1

(
1 2 3

3 2 1

)
reflect about 2

(
1 2 3

2 1 3

)
reflect about 3

Combined, these three rotations and three reflections completely account for all possible rota-

tions and reflections of the regular 3-gon because there are only 3! = 6 permutations of the integers

{1, 2, 3}. Even more, if we execute a rotation followed by a reflection (or vice-versa), then we obtain

a permutation of the integers {1, 2, 3}, hence every sequence of rotations and reflections yields a

rotation or a reflection. We consider this concept next in the context of our discussion of groups.

Concretely, the rotation of a regular n-gon through an angle of 360k/n degrees produces a copy of

the regular n-gon with the ith vertex in place of the (i + k)th vertex (modulo n). Likewise, the

reflection of a regular n-gon about a vertex k swaps the labels of the vertices other than k according

to the parity of n. Our immediate aim is to establish that the collection Dn of these rotations and

reflections of a regular n-gon forms a subgroup of order 2n of the symmetric group Sn on n letters.

Theorem 1.6.1 (Generators of the Dihedral Group). Given any integer n ≥ 3, consider the collec-

tion Dn of symmetry-preserving rotations and reflections of a regular n-gon. Every element of Dn

is the product of some elements r, s ∈ Dn such that ord(r) = n and ord(s) = 2 and sr = rn−1s.

Proof. We will denote by r the rotation of the regular n-gon through an angle of 360/n degrees and

by s the reflection of the regular n-gon about the vertex 1. Conventionally, the rigid motion sr of

the regular n-gon is obtained by first performing the rotation r and subsequently performing the

reflection s. Observe that r has order n: indeed, it follows that rk is the rotation of the regular n-gon

through an angle 360k/n degrees, and the rational numbers 360k/n are distinct for each integer

1 ≤ k ≤ n. On the other hand, rn+1 is the rotation through the angle 360+ 360/n degrees; this has

the same effect as rotating about the angle 360/n degrees, hence we conclude that rn+1 = r, and

the order of r is n. Certainly, the order of s is two because reflection about the vertex 1 twice does

not swap any of the vertices, i.e., we have that s2 is the identity permutation on the vertices.

We will demonstrate next that every reflection of the regular n-gon can be achieved by performing

r and s sequentially in some order. We claim that rk−1s is a distinct reflection of the regular n-gon

for each integer 1 ≤ k ≤ n. Observe that s has the effect of labelling the vertices 1, 2, . . . , n of the

regular n-gon counterclockwise (as opposed to the usual clockwise order); then, rk−1 replaces vertex
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1 with the label k, vertex n with the label k − 1, and vertex 2 with the label k + 1 (modulo n).

Consequently, we conclude that rk−1s is a distinct reflection for each integer 1 ≤ k ≤ n. Considering

that there are n reflections of any regular n-gon, they must be precisely s, rs, r2s, . . . , rn−1s.

n

1 2

2

1 n

k + 1

k k − 1apply s apply rk−1

n

1 2

n− 1

n 1

1

n n− 1apply r apply s

rk−1s:

sr:

Last, we attend to sr. Observe that r has the effect of labelling vertex 1 with label n, vertex 2

with label 1, and vertex n with label n−1; then, under s, vertex 1 retains the label n, vertex 2 obtains

the label n− 1, and vertex n obtains the label 1. Put another way, we have that sr = rn−1s.

Proposition 1.6.2. Given any integer n ≥ 3, consider the collection Dn of symmetry-preserving

rotations and reflections of a regular n-gon. We have that Dn is a subgroup of Sn of order 2n.

Proof. Every symmetry-preserving rotation or reflection of the regular n-gon corresponds to a bijec-

tion of the vertices of the regular n-gon, hence these rigid motions can be viewed as permutations of

the integers 1, . . . , n. Concretely, we may view Dn in this way as a subset of Sn. By Theorem 1.6.1,

the distinct elements of Dn are r, r2, . . . , rn, s, rs, r2s, . . . , rn−1s, hence Dn has order 2n. Even more,

every rotation rk has a multiplicative inverse rn−k, and every reflection rks is its own multiplicative

inverse. Consequently, by the Two-Step Subgroup Test, it suffices to prove that xy ∈ Dn for any

elements x, y ∈ Dn. Certainly, the product of any pair of rotations is a rotation, hence we may

assume that x and y are not both rotations. By Theorem 1.6.1, we may assume first that x = rk

and y = rℓs for some integers 1 ≤ k, ℓ ≤ n. Observe that xy = rk+ℓs; by taking the exponent k + ℓ

modulo n, we conclude that xy lies in Dn. Conversely, if x = rks and y = rℓ for some integers

1 ≤ k, ℓ ≤ n, we conclude that xy = rksrℓ = rkrℓ(n−1)s = rℓ(n−1)+ks lies in Dn. Last, if x = rks and

y = rℓs for some integers 1 ≤ k, ℓ ≤ s, then xy = rksrℓs = rkrℓ(n−1)s2 = rℓ(n−1)+k is in Dn.

We will henceforth refer to the pair (Dn, ·) as the dihedral group of order 2n as guaranteed

by Proposition 1.6.2. We adopt the convention that the identity element 1 of this group is obtained

from the arrangement of the n vertices of the regular n-gon in clockwise order by doing nothing.

Example 1.6.3. Consider the dihedral group D4 of order 8 (i.e., the group of symmetry-preserving

rotations and reflections of a square). By Theorem 1.6.1, it follows that the elements of D4 are

the identity element 1; the rotation r by 90◦; the rotation r2 by 180◦; the rotation r3 by 270◦; the

reflection s about vertex 1; the reflection rs about the line perpendicular to side 12; the reflection

r2s about the vertex 2; and the reflection r3s about the line perpendicular to side 14.

Considering that every symmetry-preserving rotation and reflection of a square is a bijection

from the set {1, 2, 3, 4} to itself, we can realize each of the eight elements of D4 as a permutation

of the integers 1, 2, 3, and 4. Explicitly, the following hold in two-line and one-line notation.
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1 =

(
1 2 3 4

1 2 3 4

)
= (1)

r =

(
1 2 3 4

2 3 4 1

)
= (1234)

r2 =

(
1 2 3 4

3 4 1 2

)
= (13)(24)

r3 =

(
1 2 3 4

4 1 2 3

)
= (1432)

s =

(
1 2 3 4

1 4 3 2

)
= (24)

rs =

(
1 2 3 4

2 1 4 3

)
= (12)(34)

r2s =

(
1 2 3 4

3 2 1 4

)
= (13)

r3s =

(
1 2 3 4

4 3 2 1

)
= (14)(23)

We leave the above details for the reader to check pictorially in Exercise 1.12.63.

Example 1.6.4. Consider the dihedral groupD5 of order 10 (i.e., the group of symmetry-preserving

rotations and reflections of a regular pentagon). By Theorem 1.6.1, the elements of D5 are the

identity element 1; the rotation r by 72◦; the rotation r2 by 144◦; the rotation r3 by 216◦; the

rotation r4 by 288◦; the reflection s about vertex 1; the reflection rs about vertex 4; the reflection

r2s about vertex 2; the reflection r3s about vertex 5; and the reflection r4s about vertex 3.

1 =

(
1 2 3 4 5

1 2 3 4 5

)
= (1)

r =

(
1 2 3 4 5

1 2 3 4 5

)
= (12345)

r2 =

(
1 2 3 4 5

1 2 3 4 5

)
= (13524)

r3 =

(
1 2 3 4 5

1 2 3 4 5

)
= (14253)

r4 =

(
1 2 3 4 5

1 2 3 4 5

)
= (15432)

s =

(
1 2 3 4 5

1 2 3 4 5

)
= (24)(35)

rs =

(
1 2 3 4 5

1 2 3 4 5

)
= (12)(35)

r2s =

(
1 2 3 4 5

1 2 3 4 5

)
= (13)(45)

r3s =

(
1 2 3 4 5

1 2 3 4 5

)
= (14)(23)

r4s =

(
1 2 3 4 5

1 2 3 4 5

)
= (15)(24)

We leave the above details for the reader to check pictorially in Exercise 1.12.64.

We note that in each of the previous examples, the elements of the dihedral groups were cycles

or products of disjoint transpositions, hence these explorations provide further illustration of the

Cycle Decomposition Theorem. One can demonstrate moreover that every permutation is a product

of (not necessarily disjoint) transpositions; however, we will conclude our discussion of permutation

groups here. We encourage the interested reader to peruse Section 3.8 for more information.

https://dylan-c-beck.github.io/ma383_MA383%20--%20Fall%202022%20Lecture%20Notes.pdf
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1.7 Cosets and Lagrange’s Theorem

Central to the theory of groups is the question of determining all proper non-trivial subgroups of a

group. We have already seen in Example 1.2.13 that the abelian groups (Z4,+) and (Z2 × Z2,+)

both have order four, but they are distinct from one another as groups because (Z4,+) admits only

one non-trivial proper subgroup compared to the three non-trivial proper subgroups of (Z2×Z2,+).

Our aim throughout this section is to prove Lagrange’s Theorem, a powerful tool in group theory

that drastically narrows down the list of possible subgroups of any group of finite order.

We will henceforth assume that (G, ∗) is a group. Given any subgroup H of G, the left coset

of H in G represented by an element g ∈ G is the set of left-products of elements of H with g.

g ∗H = {g ∗ h | h ∈ H}

We define the right cosets of H analogously as the set of right-products of elements of H with g.

H ∗ g = {h ∗ g | h ∈ H}

Collecting the left cosets of H represented by any element of G yields the left cosets of H in G.

G/H = {gH | g ∈ G}

Example 1.7.1. Consider the dihedral group D3 = {1, r, r2, s, rs, r2s} and its subgroup H = {1, s}.
We obtain the left cosets of H in G by calculating the products xH for each element x ∈ D3.

1H = {1h | h ∈ H} = {12, 1s} = {1, s} = H = {s, 1} = {s1, s2} = sH

rH = {rh | h ∈ H} = {r1, rs} = {r, rs} = {rs, r} = {rs1, r1} = {rs1, (rs)s} = rsH

r2H = {r2h | h ∈ H} = {r21, r2s} = {r2, r2s} = {r2s, r2} = {r2s1, r21} = {r2s1, (r2s)s} = r2sH

We obtain the right cosets of H in G by calculating the products Hx for each element x ∈ D3.

H1 = {h1 | h ∈ H} = {12, s1} = {1, s} = H = {s, 1} = {1s, s2} = Hs

Hr = {hr | h ∈ H} = {1r, sr} = {r, r2s} = {r2s, r} = {r2s, s2r} = {1(r2s), s(r2s)} = Hr2s

Hr2 = {hr2 | h ∈ H} = {1r2, sr2} = {r2, (sr)r} = {r2, (r2s)r} = {r2, rs} = {rs, srs} = Hrs

Crucially, the identity sr = r2s holds by Theorem 1.6.1. Observe that rH ̸= Hr and r2H ̸= Hr2,

hence the left and right cosets with respect to the same representative are not necessarily equal.

Conversely, it holds that the left and right cosets of the subgroupK = {1, r, r2} inD3 coincide for

each representative. Explicitly, the left cosets 1K = K = rK = r2K coincide with the right cosets

K1 = K = Kr = Kr2 and sK = {s, rs, r2s} = rsK = r2sK and Ks = {s, rs, r2s} = Krs = Kr2s.

We will return to this example and discuss this phenomenon in greater detail in Section 1.8.

We note that if G is abelian, then g ∗ h = h ∗ g for all elements g ∈ G and h ∈ H by definition,

hence the left and right cosets of H in G are equal, and we may refer to them simply as cosets.

Example 1.7.2. Consider the abelian group (Z,+) and its subgroup 2Z = {2q | q ∈ Z}. Observe

that 0 + 2Z = {0 + 2q | q ∈ Z} = {2q + 0 | q ∈ Z} = 2Z + 0 consists of all even integers and

1 + 2Z = {1 + 2q | q ∈ Z} = {2q + 1 | q ∈ Z} = 2Z + 1 consists of all odd integers. Consequently,

there are only two left cosets of 2Z in Z, and the left and right cosets of 2Z in Z coincide.
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We provide the following propositions to summarize and generalize our current observations.

Proposition 1.7.3 (Coset Representatives Are Not Unique). Consider any group G and any sub-

group H of G. Given any element g ∈ G, the left coset of H in G represented by g satisfies that

gH = ghH for all elements h ∈ H, hence the left coset representatives of H in G are not unique.

Proof. Observe that for every element h ∈ H, we have that gh = gheG lies in ghH because H is a

subgroup of G, hence we conclude that gH ⊆ ghH. Conversely, for any element h′ ∈ H, we have

that hh′ is an element of H so that ghh′ lies in gH for all elements h′ ∈ H, i.e., ghH ⊆ gH.

Proposition 1.7.4 (Equivalent Conditions for the Equality of Left Cosets). Consider any pair of

elements g1, g2 ∈ G of any group G. Given any subgroup H of G, the following properties pertaining

to the left cosets of H in G are equivalent. Even more, these hold for the right cosets of H in G.

(a.) We have that g1H = g2H.

(b.) We have that g1H ⊇ g2H.

(c.) We have that g2 ∈ g1H.

(d.) We have that g−1
1 g2 ∈ H.

(e.) We have that Hg−1
1 = Hg−1

2 .

Proof. We leave it to the reader as Exercise 1.12.69 to prove directly that the first three implications

hold. We will assume that g−1
1 g2 ∈ H. Consequently, for every element h ∈ H, we have that hg−1

1 g2
lies inH by assumption thatH is a subgroup of G. Put another way, we have thatHg−1

1 g2 ⊆ H, from

which it follows that Hg−1
1 ⊆ Hg−1

2 . Conversely, we have that g−1
2 g1 = (g−1

1 g2)
−1, and we conclude as

before that Hg−1
2 ⊆ Hg−1

1 , hence property (d.) implies property (e.). Last, if Hg−1
1 = Hg−1

2 holds,

then we claim that g1H = g2H. By hypothesis, for every element h1 ∈ H, there exists an element

h2 ∈ H such that h1g
−1
1 = h2g

−1
2 . By taking the inverses of both sides, we find that g1h

−1
1 = g2h

−1
2 .

Consequently, it follows that g1h1 = g2h
−1
2 h21 lies in g2H by assumption that H is a subgroup. We

conclude that g1H ⊆ g2H; the other inclusion is proved analogously, hence equality holds.

Given any group G and any subgroup H of G, the (possibly infinite) number [G : H] of distinct

left cosets of H in G is the index of H in G. We refer the reader to Exercise 1.12.70 for an example

of infinite index: indeed, the rational numbers Q form a subgroup of the additive group (R,+) of

real numbers for which [R : Q] is infinite, but the difficulty of the exercise is to demonstrate that

the index is infinite. Often, we will restrict our attention to cases of finitely many left cosets of H

in G, hence in the following discussion, the index [G : H] will typically be a positive integer.

Example 1.7.5. Consider the dihedral groupD3 = {1, r, r2, s, rs, r2s} and its subgroupsH = {1, s}
and K = {1, r, r2} of Example 1.7.1. We established previously that [G : H] = 3 and [G : K] = 2.

Example 1.7.6. We established in Example 1.7.2 that [Z : 2Z] = 2 holds as additive groups, and

Exercise 1.12.71 illustrates that [Z : nZ] = |n| as groups under addition for any nonzero integer n.

Our next proposition illustrates that there is no need to define any further machinery to measure

the number of right cosets of H in G; in fact, this is exactly equal to the index of H in G.
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Proposition 1.7.7 (Bijection Between Left and Right Cosets). Given any subgroup H of any group

G, the left cosets of H in G are in bijection with the right cosets of H in G. Consequently, if [G : H]

is finite, then the index of H in G counts the equal number of left and right cosets of H in G.

Proof. We will denote by G/H the collection of left cosets of H in G and by H\G the collection of

right cosets of H in G.We claim that the function fg : G/H → H\G defined by fg(gH) = Hg−1 is a

bijection of G/H onto H\G for each element g ∈ G.We must first demonstrate that this rule results

in a well-defined function, i.e., we must demonstrate that if g1H = g2H, then Hg
−1
1 = Hg−1

2 ; this is

the Vertical Line Test. But this holds by Proposition 1.7.4. Even more, the same proposition shows

that if Hg−1
1 = Hg−1

2 , then g1H = g2H, i.e., fg is injective. Last, fg is surjective by construction.

Even more, our next proposition provides a bijection between the left cosets of H in G.

Proposition 1.7.8 (Bijection Between Left Cosets). Given any subgroup H of any group G, the

left cosets of H in G are in bijection. Consequently, if |G| is finite, then |gH| = |H| for all g ∈ G.

Proof. Each left coset of H in G is of the form gH for some element g ∈ G, hence the function

fg : H → gH defined by fg(h) = gh is a bijection: indeed, every element of gH is of the form gh for

some element h ∈ H, hence fg is surjective. Cancellation holds in G, hence gh1 = fg(h1) = fg(h2) =

gh2 implies that h1 = h2, i.e., fg is injective. Composition of Bijective Functions Is Bijective, hence

for any elements g1, g2 ∈ G, the composite function fg2 ◦ fg−1
1

: g1H → g2H is a bijection.

Proposition 1.7.9 (Coset Partition). Given any subgroup H of any group G, the relation CG defined

on the collection G/H of left cosets of H in G such that g1H CG g2H if and only if g1g
−1
2 ∈ H is an

equivalence relation. Concretely, the left cosets of H in G are pairwise disjoint and every element

of G lies in some left coset of H in G, hence G/H induces the coset partition CG of G.

Proof. We must demonstrate that the relation CG defined on the collection G/H of left cosets of H

in G such that g1H CG g2H if and only if g1g
−1
2 ∈ H is reflexive, symmetric, and transitive.

1.) By assumption that H is a subgroup of G, we have that eG = gg−1 lies in H for all left cosets

gH of H in G, hence we have that gH CG gH for all element g ∈ G, i.e., CG is reflexive.

2.) Observe that if g1H CG g2H, then g1g−1
2 lies in H. By assumption that H is a subgroup of G,

it follows that g2g
−1
1 = (g1g

−1
2 )−1 ∈ H so that g2H CG g1H, i.e., CG is symmetric.

3.) Last, if g1H CG g2H and g2H CG g3H, then both g1g
−1
2 and g2g

−1
3 lie in H. Consequently, their

product g1g
−1
3 = (g1g

−1
2 )(g2g

−1
3 ) lies in H so that g1H CG g3H, i.e., CG is transitive.

By Proposition 1.7.4, the inclusion g1g
−1
2 ∈ H is equivalent to equality of the left cosets g1H = g2H,

hence left coset equality is an equivalence relation on the left cosets of H in G. By Corollary 0.1.51,

we conclude that the left cosets of H in G partition G: the members of the partition are the disjoint

equivalence classes of G modulo CG, i.e., they are the disjoint left cosets of H in G.

We are now in position to state and prove the eponymous theorem of this section.

Theorem 1.7.10 (Lagrange’s Theorem). Given any subgroup H of any finite group G, we have

|G| = [G : H]|H|. Consequently, the order of a subgroup of a finite group G divides the order of G.
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Proof. By Proposition 1.7.9, we may express G as the disjoint union of the [G : H] left cosets of H

in G. Each of these left cosets has |H| elements by Proposition 1.7.8. Concretely, if [G : H] = n for

some positive integer n, then there exist elements g1, . . . , gn ∈ G such that g1H, . . . , gnH are pairwise

disjoint and G = g1H ∪ · · · ∪ gnH. Consequently, we have that |G| =
∑n

i=1|giH|. Proposition 1.7.8

yields that |giH| = |H|, and there are [G : H] summands, so we conclude that |G| = [G : H]|H|.
Corollary 1.7.11 (Lagrange’s Theorem for a Descending Chain of Subgroups). Given any finite

group G and any descending chain of subgroups H1 ⊇ H2 ⊇ · · · ⊇ Hn−1 ⊇ Hn, we have that

[G : Hn] = [G : H1][H1 : H2] · · · [Hn−1 : Hn].

Proof. We proceed by ordinary induction on the positive integer n. By assumption that H1 and H2

are subgroups of G and H1 ⊇ H2, it follows by the Subgroup Test that H2 is a subgroup of H1.

Consequently, if |G| is a positive integer, then |H1| and |H2| are positive integers; thus, Lagrange’s

Theorem yields that [G : H2] = |G|/|H2| = (|G|/|H1|)(|H1|/|H2|) = [G : H1][H1 : H2].

Example 1.7.12. Consider any group G of order |G| = 210 = 2 · 3 · 5 · 7. By Lagrange’s Theorem,

there are exactly
(
4
0

)
+
(
4
1

)
+
(
4
2

)
+
(
4
3

)
+
(
4
4

)
possibilities for the order of a subgroup of G: indeed,

the order of any subgroup of G must divide |G|, hence the order of any subgroup of G is uniquely

determined by the choice of k prime factors from |G|. Consquently, if there exists a subgroup H of

G of order 35 = 5 · 7, then the index of H in G is given by [G : H] = |G|/|H| = 2 · 3. Conversely,
there are no subgroups of G of order 4, 9, or 25 since 210 is not divisible by 4, 9, or 25.

Caution: Lagrange’s Theorem states that the order of every subgroup of a finite group divides the

order of the group; however, the converse to Lagrange’s Theorem is false. Explicitly, there exists a

group G and an integer d ≥ 1 that divides |G| such that G does not admit a subgroup of order d.

Like we mentioned at the beginning of this section, Lagrange’s Theorem provides a tool with

which we may determine the possible subgroups of a group based on the order of the group.

Corollary 1.7.13 (Every Group of Prime Order Is Cyclic). Every group of prime order is cyclic.

Proof. By Lagrange’s Theorem, the order of any non-identity element of a group G of prime order

is prime. Consequently, there exists an element g ∈ G such that ord(g) = |G|, i.e., G = ⟨g⟩.
Corollary 1.7.14 (Every Group of Prime Order Is Abelian). Every group of prime order is abelian.

Proof. By Corollary 1.7.13, every group of prime order is cyclic, hence by Proposition 1.3.10, we

conclude that every group of prime order is abelian since every cyclic group is abelian.

Corollary 1.7.15 (Order of an Element Divides the Order of a Finite Group). Given any element

g of a finite group G, we have that ord(g) divides G.

Proof. Observe that the order of an element g ∈ G is exactly the cardinality of the cyclic subgroup

⟨g⟩ generated by G. By Lagrange’s Theorem, we conclude that ord(g) divides |G|.
Corollary 1.7.16. If G is a finite group, then g|G| = eG for every element g ∈ G.

Proof. By Corollary 1.7.15, there exists a positive integer q such that |G| = ord(g)q. Consequently,

by the Group Exponent Laws, it follows that g|G| = gord(g)q = (gord(g))q = (eG)
q = eG.

Example 1.7.17. Consider the dihedral group D44 of order 88 = 23 ·11. By Corollary 1.7.15, every

element of D44 has order 1, 2, 4, 8, 11, 22, 44, or 88; however, it does not ensure the existence of

elements of each order. Corollary 1.7.16 yields that (rs)2024 = [(rs)88]23 = 123 = 1.
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1.8 Quotient Groups and Normal Subgroups

Consider any group G. Given any subgroup H of G, we denote by G/H the collection of left cosets

of H in G, i.e., we have that G/H = {gH | g ∈ G} and gH = {gh | h ∈ H} for any element g ∈ G.

Unfortunately, the group structure of G is typically neither preserved nor inherited by G/H, hence

in most cases, it turns out that G/H is merely a set; however, as the next proposition demonstrates,

we may characterize in terms of the subgroup H exactly when (G/H, ·) is a group with respect to

some binary operation · on G/H induced by the binary operation defined on (G, ∗).

Proposition 1.8.1 (Equivalent Conditions for the Group Structure on the Left Cosets of a Group).

Given any subgroup H of any group G, the following conditions are equivalent.

(a.) G/H is a group with respect to the binary operation (g1H)(g2H) = g1g2H.

(b.) We have that gH = Hg for all elements g ∈ G.

(c.) We have that gH ⊆ Hg for all elements g ∈ G.

(d.) We have that ghg−1 ∈ H for all elements g ∈ G and h ∈ H.

We say that H is a normal subgroup of G and we write that H ⊴ G if any of the above conditions

hold. Even more, we refer to the pair (G/H, ·) as the quotient group of G modulo H.

Proof. We will assume first that the assignment (g1H)(g2H) = g1g2H is a binary operation on G/H.

Crucially, this guarantees that for all elements g1, g2 ∈ G and all elements h1, h2 ∈ H, we have that

g−1
2 h1g2h2 is an element of H. We claim that gH = Hg for all elements g ∈ G. Given any element

h ∈ H, by assumption, there exists an element k ∈ H such that ghg−1eG = k. Consequently, we

find that gh = kg so that gH ⊆ Hg. Conversely, for every element h ∈ H, there exists an element

k ∈ H such that g−1hgeG = k. We conclude therefore that Hg ⊆ gH, hence their equality holds.

Certainly, if gH = Hg for all elements g ∈ G, then gH ⊆ Hg for all elements g ∈ G. Even more,

if gH ⊆ Hg for all elements g ∈ G, then for every element h ∈ H, there exists an element h′ ∈ H

such that gh = h′g, hence we have that ghg−1 = h′ lies in H for all elements g ∈ G and h ∈ H.

Last, we will demonstrate that if ghg−1 ∈ H for all elements g ∈ G and h ∈ H, then G/H

is a group with respect to the binary operation (g1H)(g2H) = g1g2H. Crucially, for any element

g1, g2 ∈ G, the assignment (g1H)(g2H) = g1g2H is associative since the binary operation of G is

associative; the identity element of G/H with respect to this assignment is the left coset eGH of

H in G; and the inverse of a left coset gH with respect to this assignment is the left coset g−1H

of H in G. Consequently, it suffices to demonstrate that the assignment (g1H)(g2H) = g1g2H is a

well-defined function on G/H. Explicitly, we must ensure that for any pair of coset representatives

g1H = g3H and g2H = g4H, we have that g1g2H = g3g4H. By Proposition 1.7.4, it suffices to prove

that (g3g4)
−1g1g2 ∈ H. Considering that g1H = g3H, it follows that g

−1
3 g1 lies in H, hence we have

that (g3g4)
−1g1g2 = g−1

4 g−1
3 g1g2 is of the form g−1

4 hg2 for some element h ∈ H. Likewise, we have

that g−1
4 g2 lies in H by assumption that g2H = g4H. Our original hypothesis that ghg−1 lies in H

for all elements g ∈ G and h ∈ H yields that (g3g4)
−1g1g2 = g−1

4 hg2 = (g−1
4 hg4)(g

−1
4 g2) ∈ H.

Corollary 1.8.2. If G is a group and H is a subgroup of G, then G/H is a group of order [G : H]

with respect to the operation (g1H)(g2H) = g1g2H if and only if H is a normal subgroup of G.
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Example 1.8.3. Consider the subgroupK = {1, r, r2} of the dihedral groupD3 = {1, r, r2, s, rs, r2s}.
By Example 1.7.1, we have that xK = Kx for every element x ∈ D3. Consequently, it follows by

Proposition 1.8.1 that K is a normal subgroup of D3 so that K ⊴ D3. Even more, the distinct

cosets of K in D3 are given by K and sK, hence the quotient group D3/K of D3 modulo K has

two distinct elements K and sK. By definition of the binary operation on D3/K, we have that

(sK)(sK) = s2K = 1K = K, hence sK is a subgroup of D3/K of order two.

Example 1.8.4. Consider the general linear group GL(2,R) of real invertible 2× 2 matrices over

the field R of real numbers with respect to matrix multiplication (see Example 1.1.6). We will prove

that the special linear group SL(2,R) = {A ∈ GL(2,R) | det(A) = 1} of Example 1.2.7 is a normal

subgroup of GL(2,R). Concretely, for any real invertible 2× 2 matrix B, we have that

det(BAB−1) = det(B) det(A) det(B−1) = det(B) det(B)−1 det(A) = det(A) = 1.

We conclude that SL(2,R) is a normal subgroup of GL(2,R) by Condition (d.) of Proposition 1.8.1.

Example 1.8.5. Consider the additive group (Z,+) of integers and its cyclic subgroup 2Z = {2q |
q ∈ Z}. Given any integer k, we have that k+2q = 2q+ k for every integer k, hence 2Z is a normal

subgroup of Z by Proposition 1.8.1. We may form the quotient group Z/2Z as the collection of the

distincts cosets of Z modulo 2Z. By Example 1.7.2, (Z/2Z,+) consists of the two distinct cosets

0+2Z and 1+2Z such that (0+2Z)+(1+2Z) = 1+2Z and (1+2Z)+(1+2Z) = 2+2Z = 0+2Z.
Consequently, in the quotient group (Z/2Z,+), we have that ord(0+ 2Z) = 1 and ord(1+ 2Z) = 2.

Remark 1.8.6. Generally, for any integer n, the cyclic subgroup nZ = {qn | q ∈ Z} of (Z,+) is

normal since k+ qZ = qZ+ k for any integer k, hence Corollary 1.8.2 implies that Z/nZ is a group

with respect to the binary operation (a+nZ)+ (b+nZ) = (a+ b)+nZ. Even more, for any integer

k ∈ Z, we have that k(1 + nZ) = k+ nZ, hence (Z/nZ,+) is a cyclic group of order n since 1 + nZ
generates (Z/nZ,+), and 0 + nZ, 1 + nZ, . . . , (n − 1) + nZ are distinct. We will soon show that

Z/nZ and Zn are “indistinguishable” groups under their respective binary operations.

Proposition 1.8.7. Every subgroup of an abelian group is normal.

Proof. Given any subgroup H of any abelian group G, observe that gh = hg so that ghg−1 = h lies

in H for all elements g ∈ G and h ∈ H. But this is precisely condition (d.) of Proposition 1.8.1.

Last, we demonstrate that quotient groups occasionally inherit certain properties.

Proposition 1.8.8. Consider any normal subgroup H of any group G.

1.) If G is cyclic, then G/H is cyclic. Particularly, if G = ⟨g⟩, then G/H = ⟨gH⟩.

2.) If G is abelian, then G/H is abelian.

Proof. (1.) By definition, if G is cyclic, then there exists an element g ∈ G such that every element

of G can be written as gn for some integer n. Consequently, for any coset xH of G/H, there exists

an integer n such that x = gn and xH = gnH = (gH)n. We conclude that G/H is cyclic.

(2.) By definition, if G is abelian, then g1g2 = g2g1 for all elements g1, g2 ∈ G. Consequently,

for all cosets g1H, g2H of H in G, it follows that (g1H)(g2H) = g1g2H = g2g1H = (g2H)(g1H).
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1.9 Group Homomorphisms

Given any groups (G, ∗) and (H, ⋆), we say that a function φ : G→ H is a group homomorphism

if and only if φ(g1 ∗g2) = φ(g1)⋆φ(g2) for any pair of elements g1, g2 ∈ G. Put another way, a group

homomorphism is a function between groups for which the binary operations of the two groups are

compatible in the sense that the image of a product of two elements in the domain is the product

of the images of the elements in the codomain. Let us try a few examples before we discuss further.

Example 1.9.1. Consider the abelian group (Z,+) of integers under addition. Given any integer n,

we may define a function φn : Z → Z by φn(m) = mn. Observe that for any pair of integers ℓ andm,

we have that φn(ℓ+m) = n(ℓ+m) = ℓn+mn = φn(ℓ)+φn(m), hence φ is a group homomorphism.

Even more, the domain and codomain of φ are equal, hence φ is an endomorphism.

Example 1.9.2. Given any positive integer n, consider the abelian group (Z/nZ,+) of the integers

modulo n and the multiplicative group (Un, ·) of the nth roots of unity. By definition of the integers

modulo n, every element of Z/nZ is of the form k+nZ for some integer 1 ≤ k ≤ n. By definition of

the nth roots of unity, every element of Un is of the form cis
(
2πk
n

)
= cos

(
2πk
n

)
+ i sin

(
2πk
n

)
for some

integer 1 ≤ k ≤ n, where i is the complex number satisfying that i2 = −1. Consequently, it is natural

to define a function φ : (Z/nZ,+) → (Un, ·) such that φ(k + nZ) = cis
(
2πk
n

)
. Considering that this

function φ is defined on the left cosets of nZ in Z, we must check that its rule is well-defined, i.e.,

that φ(k + nZ) does not depend on the coset representative k + nZ. We assume to this end that

there are two different coset representative for the same coset, i.e., suppose that k+nZ = ℓ+nZ. By
subtracting ℓ+nZ from both sides, we have that (k− ℓ)+nZ = 0+nZ so that k− ℓ = mn for some

integer m yields that k = mn + ℓ and 2πk
n

= 2πm + 2πℓ
n
. Considering that cos(2πm + θ) = cos(θ)

and sin(2πm + θ) = sin(θ), we conclude that cis
(
2πk
n

)
= cis

(
2πm+ 2πℓ

n

)
= cis

(
2πℓ
n

)
, hence φ is

well-defined. Even more, it follows that φ is a group homomorphism because we have that

φ((k + nZ) + (ℓ+ nZ)) = φ(k + ℓ+ nZ) = cis

(
2π(k + ℓ)

n

)
= cis

(
2πk

n

)
cis

(
2πℓ

n

)
for any integers k and ℓ by Proposition 1.4.6. Observe that φ respects the ostensibly different binary

operations of each group: it takes the sum of two cosets of Z to a product of complex numbers.

Example 1.9.3. Given any element g of any group G, we claim that the function χg : G → G

defined by χg(x) = gxg−1 is a group homomorphism. Observe that for any pair of elements x, y ∈ G,

we have that χg(xy) = gxyg−1 = (gxg−1)(gyg−1) = χg(x)χg(y). Consequently, we have that χg is a

group homomorphism; it is an endomorphism that sends x ∈ G to its g-conjugate gxg−1.

Example 1.9.4. Consider any abelian group G.We will demonstrate that the elementwise inversion

function φ : G → G defined by φ(g) = g−1 is a group endomorphism. By assumption that G is

abelian, for any elements g, h ∈ G, we have that φ(gh) = (gh)−1 = h−1g−1 = g−1h−1 = φ(g)φ(h).

We begin our more general discussion of group homomorphims by establishing some basic prop-

erties of group homomorphisms. Concretely, we will demonstrate in the following proposition that

group homomorphisms preserve the identity elements and inverses of group elements; group homo-

morphisms preserve exponentiation of group elements by integer powers; and group homomorphisms

preserve subgroups. Each of these statements will be made more explicit as follows.
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Proposition 1.9.5 (Basic Structural and Computational Properties of Group Homomorphisms).

Consider any group homomorphism φ : (G, ∗) → (H, ⋆). Each of the following properties of φ holds.

1.) We have that φ(eG) = eH .

2.) We have that φ(g−1) = φ(g)−1 for all elements g ∈ G.

3.) Given any element g ∈ G, we have that φ(gn) = φ(g)n for any integer n.

4.) Given any element g ∈ G, the order of g divides the order of φ(g).

5.) Given any subgroup K of G, we have that φ(K) is a subgroup of H.

Proof. (1.) Observe that eG = eG ∗ eG, hence we have that φ(eG) = φ(eG ∗ eG) = φ(eG) ⋆ φ(eG).

Cancelling a factor of φ(eG) as an element of H from both sides yields that φ(eG) = eH .

(2.) Observe that g ∗ g−1 = eG, hence part (a.) yields eH = φ(eG) = φ(g ∗ g−1) = φ(g) ⋆ φ(g−1).

By multiplying on the left of each side by φ(g)−1, we find that φ(g−1) = φ(g)−1.

(3.) Observe that if n is any non-negative integer, then φ(gn) = φ(g ∗ · · · ∗ g) = φ(g) ⋆ · · · ⋆ φ(g)
with n factors of φ(g). By definition, this implies that φ(gn) = φ(g)n. Conversely, if n is any negative

integer, then φ(gn) = φ(g−1 ∗ · · · ∗ g−1) = φ(g−1) ⋆ · · · ⋆ φ(g−1) with −n factors of φ(g−1).

(4.) If ord(g) = r, then eH = φ(eG) = φ(gr) = φ(g)r, and the result holds by Corollary 1.3.16.

(5.) Consider any subgroup K of G. We claim that φ(K) = {φ(k) | k ∈ K} is a subgroup of H.

Considering that eG ∈ K, we have that φ(eG) = eH lies in φ(K), hence K is nonempty, and we may

proceed by the One-Step Subgroup Test. Explicitly, for any elements φ(k1), φ(k2) ∈ φ(K), we have

that k1 ∗k−1
2 lies in the subgroup K and φ(k1)⋆φ(k2)

−1 = φ(k1)⋆φ(k
−1
2 ) = φ(k1 ∗k−1

2 ) ∈ φ(K).

Given any group homomorphism φ : (G, ∗) → (H, ⋆) the kernel of φ is defined as the set

kerφ = {g ∈ G | φ(g) = eH}

and encodes important structural data about G. We aim throughout the remainder of the chapter

to illuminate the utility of the kernel of a group homomorphism in abundant clarity for the reader.

Our first result along these lines is that the kernel of a group homomorphism detects injectivity.

Proposition 1.9.6 (Kernels and Injectivity). Given any group homomorphism φ : (G, ∗) → (H, ⋆),

we have that φ is injective if and only the kernel of φ is the trivial subgroup of G, i.e., kerφ = {eG}.

Proof. We will assume first that φ is injective. Given any element g ∈ kerφ, by the first property

of Proposition 1.9.5, we have that φ(g) = eH = φ(eG) so that g = eG by the injectivity of φ.

Conversely, suppose that kerφ is trivial. Given any elements g1, g2 ∈ G for which φ(g1) = φ(g2),

by the second part of Proposition 1.9.5, we have that eH = φ(g1)φ(g2)
−1 = φ(g1)φ(g

−1
2 ) = φ(g1g

−1
2 ).

By hypothesis that kerφ is trivial, it follows that g1g
−1
2 = eG so that g1 = g2 and φ is injective.

Example 1.9.7. Consider the group homomorphism φn : (Z,+) → (Z,+) defined by φn(m) = mn

for some nonzero integer n. Observe if m is an integer and mn = 0, then we must have that m = 0.

We conclude that kerφn = {m ∈ Z | mn = 0} = {0}, hence φn is injective by Proposition 1.9.6.

We can prove this directly: if mn = φn(m) = φn(ℓ) = ℓn, cancelling n from both sides gives m = ℓ.
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Example 1.9.8. Given any positive integer n, consider the multiplicative group Un of nth roots

of unity. By Example 1.9.2, the function φ : (Z/nZ,+) → (Un, ·) defined by φ(k + nZ) = cis
(
2πk
n

)
is a group homomorphism. We have that cis

(
2πk
n

)
= 1 if and only if k = mn for some integer m if

and only if k + nZ = 0 + nZ. Consequently, we conclude by Proposition 1.9.6 that φ is injective.

Example 1.9.9. Conjugation by a fixed group element determines an injective group endomorphism

χg : (G, ∗) → (G, ∗) defined by χg(x) = gxg−1 (see Example 1.9.3 for details). Explicitly, we have

that gxg−1 = eG if and only if x = eG for every pair of elements g, x ∈ G, hence kerχg is trivial.

Example 1.9.10. Element inversion determines an injective group endomorphism φ : G → G of

any abelian group G: indeed, for any element g ∈ G, we have that g−1 = eG if and only if g = eG.

Example 1.9.11. Consider the function π : (Z,+) → (Z/nZ,+) defined by π(k) = k+ nZ for any

positive integer n. Observe that π(k+ ℓ) = (k+ ℓ)+nZ = (k+nZ)+ (ℓ+nZ) = π(k)+π(ℓ), hence

π is a group homomorphism called the projection of Z onto Z/nZ. Observe that an integer m lies

in kerπ if and only if m + nZ = 0 + nZ if and only if m = nr for some integer r if and only if m

lies in nZ. Consequently, the kernel of π is the cyclic subgroup nZ, hence π is not injective.

We refer to any group homomorphism that is injective and surjective as a group isomorphism.

Group isomorphisms can be thought of as a means of relabelling the elements in a target group by

elements of the domain. Concretely, if φ : (G, ∗) → (H, ⋆) is a group isomorphism, then for every

element h ∈ H, there exists an element g ∈ G such that h = φ(g), hence every element of H can

be labelled with an element of G. Even more, this labelling is unique because φ is injective, hence

if φ(g1) = φ(g2), then g1 = g2. Otherwise stated, if two elements of H have the same label by an

element of G, then the two elements of H are equal. Every element of H may therefore be labelled

uniquely with an element of G. Even more, this labelling respects the binary operations of G and H

because it is a group homomorphism. We say that a pair of groups (G, ∗) and (H, ⋆) are isomorphic

if there exists a group isomorphism between them; in this case, we write (G, ∗) ∼= (H, ⋆).

Example 1.9.12. Given any positive integer n, consider the multiplicative group Un of nth roots of

unity. By Example 1.9.8, the function φ : (Z/nZ,+) → (Un, ·) defined by φ(k+nZ) = cis
(
2πk
n

)
is an

injective group homomorphism. Considering that Z/nZ and Un are finite sets of the same cardinality

and φ is injective, Proposition 0.1.86 ensures that φ is surjective, hence φ is an isomorphism.

Example 1.9.13. Conjugation by a fixed group element g ∈ G is an injective group endomorphism;

it is also surjective because every element x ∈ G can be written as x = g(g−1xg)g−1 = χg(g
−1xg).

Consequently, conjugation is an isomorphism from a group to itself; it is a group automorphism.

Example 1.9.14. Element inversion is an injective group endomorphism of any abelian group G;

even if the group is not abelian, it is both injective and surjective because every element g ∈ G

satisfies that g = (g−1)−1. Consequently, inversion is a group automorphism of any abelian group.

Example 1.9.15. Observe that if n is any integer other than ±1, then the injective group homo-

morphism φn : (Z,+) → (Z,+) defined by φn(m) = mn is not surjective because mn ̸= 1 for any

integer m. Consequently, φn is not an isomorphism for any integer other than n = ±1.

Example 1.9.16. Generally, the projection map π : (Z,+) → (Z/nZ,+) defined by π(k) = k+nZ
for a fixed positive integer n is not an isomorphism because it is surjective but not always injective.
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Bearing in mind the Basic Structural and Computational Properties of Group Homomorphisms,

we investigate next the additional structure provided by the injective and surjective properties of a

group isomorphism φ : (G, ∗) → (H, ⋆). By the paragraph preceding Example 1.9.12, we intuitively

suspect that the function inverse φ−1 of a group isomorphism φ is likewise a group isomorphism. We

could also reasonably expect that two groups are isomorphic only if they have the same properties.

Concretely, if two groups are isomorphic and one of the groups is cyclic or abelian, then we might

anticipate that the other group is also cyclic or abelian. We address these inquiries as follows.

Proposition 1.9.17 (Basic Structural and Computational Properties of Group Isomorphisms).

Consider any group isomorphism φ : (G, ∗) → (H, ⋆). Each of the following properties of φ holds.

1.) We have that |G| = |H|.

2.) We have that φ−1 : H → G is a group isomorphism.

3.) We have that G is abelian if and only if H is abelian.

4.) We have that G is cyclic if and only if H is cyclic. Particularly, if G = ⟨g⟩, then H = ⟨φ(g)⟩.

5.) Every subgroup of G induces a subgroup of H (and vice-versa ). Particularly, if G and H are

isomorphic, then G and H must have the same number of (proper non-trivial ) subgroups.

Proof. (a.) We note that φ is a bijective function from G onto H. Consequently, if either of the sets

G or H is infinite, then |G| = |H| by definition of the cardinality of an infinite set. Conversely, if

the sets G and H are both finite, then we have that |G| = |H| by Proposition 0.1.86.

(b.) By hypothesis that φ : G→ H is a bijective function, the Existence of an Inverse Function

Theorem ensures that the inverse relation φ−1 : H → G defined by φ−1(φ(g)) = g is a well-defined

bijective function. Consequently, it suffices to note that for any elements g1, g2 ∈ G, we have that

φ−1(φ(g1) ⋆ φ(g2)) = φ−1(φ(g1 ∗ g2)) = g1 ∗ g2 = φ−1(φ(g1)) ∗ φ−1(φ(g2)).

(c.) Given any elements h1, h2 ∈ H, we must demonstrate that h1 ⋆ h2 = h2 ⋆ h1. By assumption

that φ is surjective, there exist elements g1, g2 ∈ G such that h1 = φ(g1) and h2 = φ(g2) and

h1 ⋆ h2 = φ(g1) ⋆ φ(g2) = φ(g1 ∗ g2) = φ(g2 ∗ g1) = φ(g2) ⋆ φ(g1) = h2 ⋆ h1

by assumption that G is abelian; the same argument applied to φ−1 : H → G yields the converse.

(d.) Observe that if G is cyclic, then there exists an element g ∈ G such that every element of

G is of the form gn for some integer n. Considering that φ is surjective, every element of H can be

written as h = φ(gn) = φ(g ∗ · · · ∗ g) = φ(g) ⋆ · · · ⋆ φ(g) = φ(g)n for some integer n. Consequently,

we find that H is cyclic; it is generated by the image of the generator of G with respect to φ.

(e.) By the fifth part of Proposition 1.9.5, every subgroup K of G induces the subgroup φ(K)

of H, hence H has at least as many subgroups as G. Conversely, every subgroup L of H induces the

subgroup φ−1(L) of G, hence G has at least as many subgroups as H. We conclude that G and H

possess the same number of subgroups. Last, we have that φ(K) = {eH} if and only if K = {eG}
by Proposition 1.9.6 and φ(K) = H if and only if K = G because φ is a bijection.
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Using the language of group isomorphisms, we will formally establish that there is “essentially

only one” infinite cyclic group and there is “essentially only one” finite cyclic group as follows.

Theorem 1.9.18. Every infinite cyclic group is isomorphic to (Z,+).

Proof. Consider any infinite cyclic group G. By definition, there exists an element g ∈ G such that

every element of G can be written as gn for some integer n ∈ Z. Observe that if gm = gn for some

integers m and n, then eG = gm(gn)−1 = gmg−n = gm−n by the Group Exponent Laws, hence the

order of g (i.e., the order of G) is finite — a contradiction. Consequently, every element of G can

be written uniquely as gn for some integer n ∈ Z. We may therefore define a bijective function

φ : (Z,+) → (G, ∗) by φ(n) = gn. We note that φ(m + n) = gm+n = gmgn = φ(m)φ(n) by the

Group Exponent Laws, hence φ is an isomorphism and (G, ∗) is isomorphic to (Z,+).

Example 1.9.19. Given any nonzero real number α, the cyclic subgroup ⟨α⟩ of the additive group
(R,+) of real numbers generated by α contains all integer multiples of α, i.e., ⟨α⟩ = {nα | n ∈ Z}.
Consequently, the canonical group homomorphism φ : (Z,+) → (⟨α⟩,+) defined by φ(n) = nα is an

isomorphism of ⟨α⟩ and (Z,+). Even more, addition of real numbers is commutative, hence (R,+)

is an abelian group so that ⟨α⟩ is a normal subgroup of (R,+) according to Proposition 1.8.7. We

conclude that R/⟨α⟩ is an abelian group by Proposition 1.8.8. Consider the relation φ : R/⟨α⟩ → T
defined by φ(x + ⟨α⟩) = cis

(
2πx
α

)
for the circle group T of complex numbers with unit modulus.

Crucially, Algorithm 1.4.3 ensures that φ is a well-defined function. Even more, for any real number

0 ≤ ϕ < 2π, we have that ϕ = 2π
α

(
α
2π
ϕ
)
for the real number 0 ≤ α

2π
ϕ < α, hence we conclude that

cis(ϕ) = φ
(

α
2π
ϕ+ ⟨α⟩

)
so that φ is surjective. Last, we have that cis

(
2πx
α

)
= φ(x+ ⟨α⟩) = 1 + 0i if

and only if cos
(
2πx
α

)
= 1 and sin

(
2πx
α

)
= 0 if and only if 2πx

α
= 0 if and only if x = 0 if and only if

x+ ⟨α⟩ = 0 + ⟨α⟩, hence we conclude that φ is injective by Proposition ??.

Proposition 1.9.20. Given any homomorphism φ : (G, ∗) → (H, ⋆) of finite groups with the same

order, we have that φ is an isomorphism if and only if φ is injective if and only if φ is surjective.

Proof. We note that φ is an isomorphism if and only if φ is bijective if and only if φ is injective and

surjective. By assumption that (G, ∗) and (H, ⋆) are finite groups of the same order, Proposition

0.1.86 implies that φ is bijective if and only if φ is injective if and only if φ is surjective.

Theorem 1.9.21. Every finite cyclic group of order n is isomorphic to (Z/nZ,+).

Proof. Consider any finite cyclic group G of order n. By definition, there exists an element g ∈ G

such that G = {gk | 0 ≤ k ≤ n−1}. Consequently, we may define a function φ : (Z/nZ,+) → (G, ∗)
by the assignment φ(k+nZ) = gk.We must demonstrate that φ is well-defined, i.e., φ(k+nZ) does
not depend upon the coset representative of k+nZ.We will assume to this end that k+nZ = ℓ+nZ.
By definition, this equality entails that k − ℓ = mn and k = mn+ ℓ for some integer m so that

φ(k + nZ) = gk = gmn+ℓ = gmngℓ = (gn)mgℓ = (eG)
mgℓ = eGg

ℓ = gℓ = φ(ℓ+ nZ)

by the Group Exponent Laws. We conclude that φ is well-defined. Even more, φ is surjective by

definition of Z/nZ and φ(k + nZ), hence Proposition 1.9.20 implies that φ is an isomorphism.

Example 1.9.22. Consider the multiplicative group of complex numbers G = {1,−1, i,−i}. Ob-

serve that i2 = −1, i3 = −i, and i4 = 1, hence G is a finite cyclic group of order four: it is generated

by i. Consequently, by Theorem 1.9.21, we conclude that (G, ·) is isomorphic to (Z/4Z,+): indeed,

by the proof of the theorem, the isomorphism φ : (Z/4Z,+) → (G, ·) is defined by φ(n+ 4Z) = in.
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1.10 Group Isomorphism Theorems

Earlier this chapter, we cited the classification of groups as a primary motivation of group theory.

Concretely, we seek to distinguish between groups based on such properties as abelianness, order,

cyclicity, and subgroup structure. Crucially, Exercise 1.12.93 shows that the existence of a group

isomorphism between two groups defines an equivalence relation on the collection of all groups; two

groups lie in the same equivalence class modulo this equivalence relation if and only if they are equal

up to isomorphism. Consequently, we may rephrase our objective stated above more concretely:

we seek to determine all groups with a specified property P up to isomorphism.

Example 1.10.1. We demonstrated in Example 1.2.13 that the additive abelian groups Z/4Z and

(Z/2Z)× (Z/2Z) each have order four, but they are not isomorphic. Explicitly, the only non-trivial

proper subgroup of (Z/4Z,+) is 2Z/4Z = {0 + 4Z, 2 + 4Z}; however, there are three non-trivial

proper subgroups of (Z/2Z)× (Z/2Z), hence these two groups cannot be isomorphic by Proposition

1.9.17. Every cyclic group of order four is isomorphic to Z/4Z by Proposition 1.9.21; we will soon

see that every non-cyclic abelian group of order four is isomorphic to (Z/2Z)× (Z/2Z).
We will now state and prove theGroup Isomorphism Theorems; these four theorems provide

us with a road map by which we may begin to tackle the classification problem of groups.

Theorem 1.10.2 (First Isomorphism Theorem). Every group homomorphism φ : (G, ∗) → (H, ⋆)

induces a group isomorphism ψ : G/ kerφ→ φ(G) defined by ψ(g ∗ kerφ) = φ(G).

Proof. We note that φ(G) is a subgroup of H by the fifth part of Proposition 1.9.5. Exercise 1.12.92

shows that kerφ is a normal subgroup of G, hence we may view G/ kerφ as a group with respect

to the induced binary operation ∗ of G. Consequently, in order to prove the claim, it suffices to

demonstrate that the relation ψ : G/ kerφ→ φ(G) defined by ψ(g ∗ kerφ) = φ(g) is a well-defined

bijective group homomorphism. Considering that ψ is defined on the equivalence classes ofGmodulo

an equivalence relation, we must show that if g ∗ kerφ = h ∗ kerφ, then ψ(g ∗ kerφ) = ψ(h ∗ kerφ).
By Proposition 1.7.4, we have that g ∗ kerφ = h ∗ kerφ if and only if h−1g ∈ kerφ if and only

if φ(h−1g) = eH if and only if φ(h−1) ⋆ φ(g) = eH if and only if φ(h)−1 ⋆ φ(g) = eH if and only

if φ(g) = φ(h) if and only if ψ(g ∗ kerφ) = ψ(h ∗ kerφ). We conclude that ψ is well-defined. By

hypothesis that φ is a group homomorphism, it follows that ψ is a group homomorphism. Even

more, ψ is surjective because its image is φ(G), hence it suffices to show that ψ is injective. Observe

that g ∗ kerφ ∈ kerψ if and only if φ(g) = ψ(g ∗ kerφ) = eH if and only if g ∈ kerφ if and only if

g ∗ kerφ = eG ∗ kerφ, hence we conclude that kerψ is trivial so that ψ is injective, as desired.

Corollary 1.10.3 (Canonical Factorization Theorem). Every homomorphism φ : (G, ∗) → (H, ⋆)

of groups induces a canonical factorization φ = ψ ◦ π via the canonical projection π : G→ G/ kerφ

and the extant group isomorphism ψ : G/ kerφ→ φ(G) of the First Isomorphism Theorem.

Proof. We note that φ(g) = ψ(g ∗ kerφ) = (ψ ◦ π)(g) for every element g ∈ G.

Consequently, the First Isomorphism Theorem indicates that in order to study the structure of

a group (G, ∗), it may be most fruitful to determine the surjective group homomorphisms from G

onto another group (H, ⋆). Concretely, suppose that there exists a surjective group homomorphism

φ : (G, ∗) → (H, ⋆). By the First Isomorphism Theorem, we have that (H, ⋆) ∼= (G/ kerφ, ∗). We

will return to this exceedingly crucial notion to provide clarifying examples at the end of this section.
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Theorem 1.10.4 (Second Isomorphism Theorem). Given any group G with any subgroup H and

any normal subgroup N, we have that HN/N and H/(H ∩N) are isomorphic as groups.

Proof. We must first demonstrate that HN is a subgroup of G such that N is a normal subgroup of

HN ; this proves that HN/N is a group. By Exercise 1.12.82, we find that HN is a subgroup of G,

so we will prove that N is a normal subgroup of HN. Every element n ∈ N can be written as eGn

so that N ⊆ HN ; moreover, N is a subgroup of G, so it is a subgroup of HN. Last, by Proposition

1.8.1, we have that gN = Ng for all elements g ∈ G, hence this identity also holds for all elements

g ∈ HN. Put another way, if N is normal in G, then it is normal in any subgroup containing it.

By Exercise 1.12.83, it follows that H∩N is a normal subgroup of H and H/(H∩N) is a group.

We may now appeal to the First Isomorphism Theorem, hence it suffices to find a surjective group

homomorphism φ : H → HN/N such that kerφ = H ∩N. Consider the function φ : H → HN/N

defined by φ(h) = hN. Every element of HN/N is of the form (hn)N for some elements h ∈ H and

n ∈ N. Considering that N is a subgroup of G, it follows that nN = N, hence every element of

HN/N is of the form hN for some element h ∈ H.We conclude that φ is well-defined and surjective.

Even more, we have that φ(h1h2) = h1h2N = (h1N)(h2N) because N is a normal subgroup of HN.

Consequently, φ is a group homomorphism; its kernel consists of those elements h ∈ H such that

hN = eGN. By Proposition 1.7.4, we have that hN = eGN if and only if h ∈ N, from which it

follows that kerφ = H ∩N. Our proof is complete by the First Isomorphism Theorem.

Theorem 1.10.5 (Third Isomorphism Theorem). Given any group G with any normal subgroups

H and N such that N ⊆ H, we have that (G/N)/(H/N) and G/N are isomorphic as groups.

Proof. By Proposition 1.8.1, we have that gN = Ng for all elements g ∈ G, hence in particular, this

identity also holds for all elements g ∈ H. We conclude that N is a normal subgroup of H because

it is a subset of H that is a group with respect to the binary operation on G and N is normal in H.

Consequently, it follows that H/N is a group; likewise, it is a subgroup of G/N because it is a subset

of G/N that is a group under the binary operation on G/N. Even more, we claim that H/N is a

normal subgroup of G/N. Consider an element gN of G/N and an element hN ofH/N. By definition

of the binary operation of G/N, we have that (gN)(hN) = ghN. By assumption that H is a normal

subgroup of G, we have that gH = Hg for all elements g ∈ G. Explicitly, there exists an element

k ∈ H such that gh = kg, from which it follows that ghN = kgN = (kN)(gN). Considering that

this holds for all elements gN ∈ G/N and hN ∈ H/N, we conclude that (gN)(H/N) ⊆ (H/N)(gN)

for all elements gN ∈ G/N so that H/N is a normal subgroup of G/N by Proposition 1.8.1.

We seek a surjective group homomorphism φ : G/N → G/H such that kerφ = H/N. Consider

the function φ : G/N → G/H defined by φ(gN) = gH.We must first establish that φ is well-defined

because its domain consists of the left cosets of a group. Observe that if g1N = g2N, then g
−1
2 g1

is an element of N by Proposition 1.7.4. By assumption that N ⊆ H, it follows that g−1
2 g1 is an

element of H, hence the same proposition demonstrates that φ(g1N) = g1H = g2H = φ(g2N) and

φ is well-defined. Every element of G/H can be written as gH for some element g ∈ G. Even more,

if g does not lie in H, then it does not lie in N because N is a subset of H, hence every left coset

gH is the image of the left coset gN, i.e., φ is surjective. Last, we have that gN lies in kerφ if

and only if gH = φ(gN) = eGH if and only if g ∈ H by Proposition 1.7.4, hence we conclude that

kerφ = H/N. By the First Isomorphism Theorem, we conclude that (G/H)/(H/N) ∼= G/N.
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Theorem 1.10.6 (Fourth Isomorphism Theorem). Given any group G with any normal subgroup

N, we may construct a one-to-one correspondence between the subgroups of G that contain N and

the subgroups of G/N according to the assignment of a subgroup H of G such that N ⊆ H to the

subgroup H/N of G/N. Even more, this one-to-one correspondence satisfies the following properties.

1.) Given any subgroups H and K of G such that N ⊆ H and N ⊆ K, we have that H ⊆ K if and

only if H/N ⊆ K/N. Put another way, this bijective correspondence is inclusion-preserving.

2.) Given any subgroups H and K of G such that N ⊆ H ⊆ K, we have that

[K : H] = [K/N : H/N ].

3.) Given any subgroups H and K of G such that N ⊆ H and N ⊆ K, we have that

(H ∩K)/N = (H/N) ∩ (K/N).

4.) Given any subgroup H of G such that N ⊆ H, we have that H ⊴ G if and only if H/N ⊴ G/N.

Proof. We must prove first that the assignment of a subgroup H of G with N ⊆ H to the subgroup

H/N of G/N is both injective and surjective. Observe that if H/N = K/N, then for every element

h ∈ H, there exists an element k ∈ K such that hN = kN. Consequently, there exist elements

n1, n2 ∈ N such that hn1 = kn2 so that h = kn2n
−1
1 . By assumption that N ⊆ K, it follows that

h = kn2n
−1
1 is an element of K. We conclude that H ⊆ K. Conversely, an analogous argument

demonstrates that K ⊆ H, from which it follows that H = K and this assignment is injective.

Given any subgroup Q of G/N, in order to prove that this assignment is surjective, we must furnish

a subgroup H of G that contains N with the property that Q = H/N. Every element of G/N is

a left coset of N in G, hence every element of Q is a left coset of N in G. Consider the collection

H = {g ∈ G | gN ∈ Q} of elements of G that give rise to elements of Q. By assumption that Q

is a subgroup of G/N, the left coset eGN lies in Q, hence we have that eG ∈ H. Even more, for

any elements h1, h2 ∈ H, we have that h1h2N = (h1N)(h2N) lies in Q implies that h1h2 ∈ H and

h−1
1 N = (h1N)−1 lies in Q implies that h−1

1 ∈ H. We conclude by the Two-Step Subgroup Test that

H is a subgroup of G. Given any element n ∈ N, we have that nN = eGN lies in Q, from which it

follows that N ⊆ H and Q = H/N. Ultimately, this shows that our assignment is surjective.

We turn our attention to the four asserted properties. We note that the first property holds by

the first paragraph. Explicitly, if H and K are subgroups of G that contain N and satisfy that

H/N ⊆ K/N, then it must be the case that H ⊆ K. Conversely, if we assume that H ⊆ K, then the

inclusion H/N ⊆ K/N holds by definition of the left cosets of G. We note that the second property

holds by the Third Isomorphism Theorem: if H and K are subgroups of G such that N ⊆ H ⊆ K,

then the quotient groups K/H and (K/N)/(H/N) are isomorphic; in particular, there is a bijection

between K/H and (K/N)/(H/N), hence the number of left cosets of H in K is equal to the number

of left cosets of H/N in K/N. Put another way, we have that [K : H] = [K/N : H/N ]. Even more,

the third property holds by straightforward inspection: every element of (H ∩K)/N is of the form

n(H ∩K), so it is a left coset of N in both H and K. Conversely, every element of (H/N)∩ (K/N)

is a left coset of N in both H and K, hence it is a left coset of N in H ∩K.
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Last, we turn our attention to the fourth property. We will assume to this end that H is any

subgroup of G that contains N.We demonstrated previously in the proof of the Third Isomorphism

Theorem that if H is a normal subgroup of G, then H/N is a normal subgroup of G/N. Conversely,

suppose that H/N is a normal subgroup of G/N. Consequently, Exercise 1.12.92 implies that the

canonical surjections π1 : G → G/N and π2 : G/N → (G/N)/(H/N) are group homomorphisms;

the composite function π2 ◦ π1 : G → (G/N)/(H/N) defined by (π2 ◦ π1)(g) = gH is a group

homomorphism with kernel H, hence H is a normal subgroup of G by Exercise 1.12.92.

Collectively, the Group Isomorphism Theorems provide indispensable tools to study groups. We

will typically rely most heavily on the First Isomorphism Theorem due to its ubiquity and utility, as

illustrated in the proofs of the Second Isomorphism Theorem and the Third Isomorphism Theorem;

however, we would be remiss if we failed to mention that the Fourth Isomorphism Theorem gives

rise to a diagramatic way to envision the subgroups of a group called the Hasse diagram or lattice

of subgroups. Often, the Fourth Isomorphism Theorem is called the Correspondence Theorem.

We conclude this section with a series of illustrative examples to demonstrate some practical

applications of the Group Isomorphism Theorems; the reader may also consult Chapter 1 Exercises.

Example 1.10.7. Consider the general linear group GL(2,R) of real invertible 2× 2 matrices via

matrix multiplication. We will employ the First Isomorphism Theorem to identify the multiplicative

group (R×, ·) of nonzero real numbers with a proper subgroup of GL(2,R). Consider the function

φ : (R×, ·) → (GL(2,R), ·) defined by φ(α) = ( α 0
0 α ). Observe that φ is injective because φ(α) = φ(β)

if and only if α = β. Even more, φ is a group homomorphism because for any real numbers α and

β, we have that φ(αβ) =
(
αβ 0
0 αβ

)
= ( α 0

0 α )
(
β 0
0 β

)
= φ(α)φ(β). Consequently, we find that (R×, ·) is

isomorphic to φ(R×) = {( α 0
0 α ) | α ∈ R×}, i.e., the nonzero real multiples of the identity matrix.

Example 1.10.8. We will demonstrate in this example how to interpret the structure of a quotient

group using the First Isomorphism Theorem. Consider the cylic groups (Z/4Z,+) and (Z/8Z,+).

We may define a group structure on the Cartesian product Z/4Z×Z/8Z by performing the extant

binary operations componentwise. Concretely, for any integers a1, a2, b1, b2, we have that

(a1 + 4Z, b1 + 8Z) + (a2 + 4Z, b2 + 8Z) = (a1 + a2 + 4Z, b1 + b2 + 8Z)

induces a group operation on Z/4Z×Z/8Z (see Exericse 1.12.8 for a general construction). Consider

the Cartesian product ⟨2+4Z⟩×⟨4+8Z⟩ = {(2m+4Z, 4n+8Z) | m,n ∈ Z} of the respective cyclic

subgroups of Z/4Z × Z/8Z. We seek to explicitly determine the group structure of the quotient

group Z/4Z× Z/8Z modulo its subgroup ⟨2 + 4Z⟩ × ⟨4 + 8Z⟩. Crucially, we note that the relation

φ : Z/4Z × Z/8Z → Z/2Z × Z/4Z defined by φ(a + 4Z, b + 8Z) = (a + 2Z, b + 4Z) is a surjective

group homomorphism: indeed, if (a+4Z, b+8Z) = (c+4Z, d+8Z), then Proposition 1.7.4 ensures

that we must have that 4 | (a− c) and 8 | (b− d) so that 2 | (a− c) and 4 | (b− d), from which we

conclude that (a+2Z, b+4Z) = (c+2Z, d+4Z). Even more, we have that (a+4Z, b+8Z) ∈ kerφ

if and only if 2 | a and 4 | b if and only if a = 2m and b = 4n for some integers m and n, hence it

follows that kerφ = ⟨2 + 4Z⟩ × ⟨4 + 2Z⟩. We conclude by the First Isomorphism Theorem that

Z/4Z× Z/8Z
⟨2 + 4Z⟩ × ⟨4 + 8Z⟩

∼=
Z
2Z

× Z
4Z
.

https://en.wikipedia.org/wiki/Lattice_of_subgroups
https://en.wikipedia.org/wiki/Lattice_of_subgroups
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Example 1.10.9. We will prove next that the multiplicative group (R>0, ·) of positive real numbers

is isomorphic to a proper quotient of the multiplicative group (R×, ·) of nonzero real numbers, hence

these groups are not isomorphic. Consider the function ν : R× → R>0 defined by ν(x) = |x|. Every
positive real number can be written as its own absolute value, hence ν is surjective. Even more, ν is

a group homomorphism because ν(xy) = |xy| = |x| · |y|. Consequently, we have that x ∈ ker ν if and

only if |x| = 1 if and only if x = ±1, hence we have that ker ν = {−1, 1}. By the First Isomorphism

Theorem, we conclude that (R×/{−1, 1}, ·) ∼= (R>0, ·) and (R>0, ·) ̸∼= (R×, ·).
Example 1.10.10. Consider the cyclic group (Z/nZ,+) of the integers modulo a positive integer

n. Each nonzero integer m induces a cylic group (Z/mnZ,+). Observe that nZ/mnZ is the cyclic

subgroup of Z/mnZ generated by the image of n modulo mnZ; in particular, we have that nZ/mnZ
is a normal subgroup of Z/mnZ. By the Third Isomorphism Theorem, we conclude that

Z/mnZ
nZ/mnZ

∼=
Z
nZ

.

Consequently, it grants no additional information to take subsequent quotients of Z.

1.11 Chapter 1 Overview

Check back at a later date, as this section is currently under construction.

1.12 Chapter 1 Exercises

Exercise 1.12.1. Prove or disprove that R forms a group with respect to multiplication.

Exercise 1.12.2. Use the definition of a group and the fact that real multiplication is associative

and commutative to prove that R× = R\{0} forms an abelian group with respect to multiplication.

Exercise 1.12.3. Use the definition of a group and the fact that real multiplication is associative

and commutative to prove that G = {−1, 1} forms an abelian group with respect to multiplication.

Exercise 1.12.4. Consider the complex number i2 = −1. Use the definition of a group and Propo-

sition 1.4.1 to prove that G = {−1, 1,−i, i} forms an abelian group with respect to multiplication.

Exercise 1.12.5. Use the definition of a group and the fact that real addition is associative and

commutative to prove that the set RR of real univariate functions f : R → R forms an abelian group

with respect to the function addition defined for all real numbers x by (f + g)(x) = f(x) + g(x).

Exercise 1.12.6. Use the definition of a group and the fact that real multiplication is associative

and commutative to prove that the set G of real univariate functions f : R → R× forms an abelian

group with respect to the function multiplication defined for all real numbers x by fg(x) = f(x)g(x).

Exercise 1.12.7. Use the definition of a group to prove that the set G of bijective real univariate

functions f : R → R forms a group with respect to the function composition defined for all real

numbers x by (f ◦ g)(x) = f(g(x)). Prove that (G, ◦) is abelian or give an explicit counterexample.

Exercise 1.12.8. Prove that if G1, G2, . . . , Gn are finitely many groups, then their Cartesian prod-

uct G1 ×G2 × · · · ×Gn is a group with respect to the induced componentwise binary operation

(g1, g2, . . . , gn)(h1, h2, . . . , hn) = (g1h1, g2h2, . . . , gnhn).
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Exercise 1.12.9. Consider any group G. We say that an element g ∈ G is idempotent if it holds

that g2 = g. Prove that the only idempotent element of a group is the identity element eG.

Exercise 1.12.10. Given any positive integer n, consider the set Zn of equivalence classes of integers

modulo n. Prove or disprove that Zn forms an abelian group with respect to multiplication mod n.

(Hint: We suggest the reader revisit and complete Exercise 0.6.12 for reference.)

Exercise 1.12.11. Given any prime number p, consider the set Zp of equivalence classes of integers

modulo p. Prove or disprove that Zp forms an abelian group with respect to multiplication mod p.

(Hint: We suggest the reader revisit and complete Exercise 0.6.35 for reference.)

Exercise 1.12.12. Consider the nonempty set G = R \ {−1}.

(a.) Prove that ∗ : G×G→ G defined by x ∗ y = x+ y + xy is a binary operation on G.

(b.) Use the definition of a group to prove that (G, ∗) is an abelian group.

Exercise 1.12.13. Consider any nonempty set G for which there exists an associative binary

operation ∗ : G×G→ G. Prove that (G, ∗) is a group provided that the following conditions hold.

(a.) Given any elements g, h ∈ G, the equation g ∗ x = h admits a solution x ∈ G.

(b.) Given any elements g, h ∈ G, the equation y ∗ g = h admits a solution y ∈ G.

Exercise 1.12.14. Prove that the Group Exponent Laws hold for any group G.

Exercise 1.12.15. Prove that a group G is abelian if ghg−1h−1 = eG for all elements g, h ∈ G.

Exercise 1.12.16. Prove that a group G is abelian if (gh)2 = g2h2 for all elements g, h ∈ G.

(Hint: Give a symbolic simplification of the element (gh)2 in two ways; then, compare your results.)

Exercise 1.12.17. Prove that a group G is abelian if g2 = eG for every element g ∈ G.

(Hint: Use a previous exercise to derive this as a corollary.)

Exercise 1.12.18. Prove that a group G is abelian if gh = g−1h−1 for all elements g, h ∈ G.

(Hint: Use a previous exercise to derive this as a corollary.)

Exercise 1.12.19. Prove that a group G is abelian if g3 = eG and g4h = hg for all g, h ∈ G.

Exercise 1.12.20. Prove that any group of order four is abelian.

Exercise 1.12.21. Consider the group (R×, ·) of nonzero real numbers with respect to multiplica-

tion. Prove that the positive real numbers R>0 = {x ∈ R | x > 0} form a subgroup of (R×, ·).
Exercise 1.12.22. Consider the group (G, ◦) of bijective real univariate functions f : R → R with

respect to the binary operation of function composition defined by (f ◦ g)(x) = f(g(x)) for all real

numbers x. Recall that a real univariate function g : Dg → R is odd if −x ∈ Dg and g(−x) = −g(x)
for all real numbers x ∈ Dg. Prove that the set O of odd functions f ∈ G is a subgroup of (G, ◦).
Exercise 1.12.23. Given any group G, we define the center of G as follows.

Z(G) = {x ∈ G | gx = xg for all elements g ∈ G}

Prove that Z(G) is a subgroup of G. (We derive the notation from the German “das Zentrum.”)
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Exercise 1.12.24. Given any group G, we define the centralizer of an element x ∈ G as follows.

ZG(x) = {g ∈ G | gx = xg}

Prove that the centralizer ZG(x) of an element x ∈ G is a subgroup of G.

Exercise 1.12.25. Given any group G, the conjugate of a subgroup H by an element g ∈ G is

gHg−1 = {ghg−1 | h ∈ H}.

Prove that the conjugate gHg−1 of a subgroup H of G by an element g ∈ G is a subgroup of G.

Exercise 1.12.26. Given any group G, we define the normalizer of a subgroup H of G as follows.

NG(H) = {g ∈ G | gHg−1 = H}

Prove that the normalizer of a subgroup H of G is a subgroup of G.

(Hint: Observe that if gHg−1 = H, then for every element h ∈ H, there exists an element k ∈ H

such that h = gkg−1. Conclude that g−1hg lies in H for every element g ∈ NG(H).)

Exercise 1.12.27. Construct an explicit counterexample to disprove the following statement: if G

is any group and H and K are any subgroups of G, then H ∪K is a subgroup of G.

Exercise 1.12.28. Prove that if G is any group with subgroups H and K, then H∩K is a subgroup

of G. Conclude by induction that the finite intersection of subgroups of G is a subgroup of G.

Exercise 1.12.29. Prove that if G is any group with subgroups {Hi}i∈I , then ∩i∈IHi is a subgroup.

Exercise 1.12.30. Prove that if G is any group with subgroups H and K, then the product HK

of H andK defined by HK = {hk | h ∈ H and k ∈ K} is a subgroup of G if and only if HK = KH.

Exercise 1.12.31. Construct an explicit counterexample to disprove the following statement: if G

is any group and H and K are any subgroups of G, then HK is a subgroup of G.

Exercise 1.12.32. Prove or disprove that the rational numbers Q form a cyclic group.

Exercise 1.12.33. Consider the multiplicative group Z×
p = {a ∈ Zp | gcd(a, p) = 1} of integers

modulo a prime number p. Verify that Z×
p is a cyclic group of order p− 1 for p = 2, 3, 5, 7, and 11.

Exercise 1.12.34. List the elements of Z×
n for each integer n = 4, 6, 8, 9, and 10. Be sure to make

note of which of these groups is cyclic, and provide at least one generator for each cyclic group.

Exercise 1.12.35. Consider the multiplicative group Z×
n = {a ∈ Zn | gcd(a, n) = 1} of integers

modulo n. Prove that if n ≥ 3, then there exists a non-identity element a ∈ Z×
n of order two.

Exercise 1.12.36. Consider the additive group Zp of integers modulo a prime number p. Prove

that (Zp,+) admits no subgroups other than itself and the trivial subgroup (i.e., it is simple).

Exercise 1.12.37. Consider any group G. Prove that the following statements hold.

(a.) Given any element g ∈ G, we have that ord(g−1) = ord(g).

(b.) Given any element x ∈ G, we have that ord(gxg−1) = ord(x) for all elements g ∈ G.

(c.) Given any elements g, h ∈ G, we have that ord(gh) = ord(hg).
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Exercise 1.12.38. Consider any elements g and h of an abelian group G such that the orders of g, h,

and gh are finite. Concretely, we will henceforth denote ord(g) = r, ord(h) = s, and ord(gh) = t.

(a.) Prove that t | rs.

(b.) Prove that r | st and that s | rt. Conclude that r

gcd(r, s)

∣∣∣∣ s

gcd(r, s)
t and

s

gcd(r, s)

∣∣∣∣ r

gcd(r, s)
t.

(c.) Prove that
r

gcd(r, s)

∣∣∣∣ t and s

gcd(r, s)

∣∣∣∣ t. Conclude that
rs

gcd(r, s)2

∣∣∣∣ t.
Ultimately, conclude that if ord(g) and ord(h) are relatively prime, then ord(gh) = ord(g) ord(h).

(Hint: Use Corollary 1.3.16 and make the “inspired substitution” hst = eG in gst = gsthst of part

(b.), to quote the great Lucian Grand. Use Euclid’s Lemma and Exercise 0.6.34 for part (c.).)

Exercise 1.12.39. Consider any abelian group G and any prime number p. Prove that for any

elements g, h ∈ G such that ord(g) = pm and ord(h) = pn, we have that ord(gh) = max{m,n}.
Exercise 1.12.40. Consider any cyclic group G of order n. Prove that ord(x) | n for all x ∈ G.

Exercise 1.12.41. Consider any cyclic group G of order n. Prove that for all positive divisors d of

the positive integer n, there exists a cyclic subgroup of G of order d.

Exercise 1.12.42. Consider any abelian groupG. Prove that the setGT = {g ∈ G | ord(g) is finite}
of elements of G of finite order is a subgroup of G; it is aptly called the torsion subgroup of G.

Exercise 1.12.43. Consider any cyclic group G that is generated by an element g ∈ G. Prove that

if gn ∈ G generates G for some integer n, then we must have that gcd(n, ord(g)) = 1.

Exercise 1.12.44. Prove that if some group G is not cyclic, then it admits (at least) one proper

non-trivial subgroup. Conclude that if G has no proper non-trivial subgroups, then G is cyclic.

Exercise 1.12.45. Prove that if G is any group and g is any element of G, then the cyclic subgroup

⟨g⟩ of G generated by g is the intersection of all subgroups of G that contain g.

Exercise 1.12.46. Prove that if G is any group of even order, then there are an odd number of

elements of G of order two. Conclude that any group of even order admits a subgroup of order two.

(Hint: Group the elements of G according to the property that g2 = eG or not.)

Exercise 1.12.47. Graph the third roots of unity ω, ω2, ω3 in the complex plane. List each root

of unity in polar form ωk = cis(θ) for some angle 0 ≤ θ < 2π and in component form ωk = a+ bi for

some nonzero real numbers a and b; then, indicate which of the third roots of unity are primitive.

Exercise 1.12.48. Graph the fourth roots of unity ω, ω2, ω3, ω4 in the complex plane. List

each root of unity in polar form ωk = cis(θ) for some angle 0 ≤ θ < 2π and in component form

ωk = a+ bi for some nonzero real numbers a and b; then, indicate which of the fourth roots of unity

are primitive. Compare these results with those from Exercise 1.12.47 and explain the differences.

Exercise 1.12.49. Generally, what shape do the nth roots of unity form in the complex plane?

Use this information to deduce when the polynomial xn−1 has two real roots or only one real root.

Exercise 1.12.50. Consider the complex number ω = cos
(
2π
5

)
+ i sin

(
2π
5

)
.

(a.) Prove that ω is a primitive fifth root of unity.
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(b.) Prove that ω−1 = cos
(−2π

5

)
+ i sin

(−2π
5

)
.

(c.) Prove that ω + ω−1 = 2 cos
(
2π
5

)
and ω4 + ω−4 = 2 cos

(
2π
5

)
.

Exercise 1.12.51. Prove that if z ∈ C∗ has finite order, then we must have that |z| = 1. Conclude

that every nonzero complex number such that |z| ≠ 1 has infinite order.

Exercise 1.12.52. Find all elements of finite order in the multiplicative group of complex numbers.

Exercise 1.12.53. Prove that (r1 cis θ1)(r2 cis θ2) = r1r2 cis(θ1 + θ2).

Exercise 1.12.54. Given any positive integer n, consider the set [n] = {1, 2, . . . , n}. Complete the

following steps to provide an alternate sequential proof of Proposition 1.5.5.

(i.) Use words and symbols to define when a bijection σ : [n] → [n] is a cycle.

(ii.) Use words and symbols to define the entries of the one-line notation of σ.

(iii.) Use words and symbols to define when two cycles σ and τ are disjoint.

(iv.) Prove that if i does not appear in either the one-line notation for σ or τ, then στ(i) = τσ(i).

(v.) Prove that if i appears in the one-line notation for σ, then it does not appear in the one-line

notation for τ. Conclude in this case that στ(i) = τσ(i) for any disjoint cycles σ and τ.

Exercise 1.12.55. Prove that every k-cycle can be written as a product of transpositions. Conclude

by the Cycle Decomposition Theorem that every permutation is a product of transpositions.

(Hint: Consider the k-cycle (a1, . . . , ak). Use the fact that permutations are multiplied right to left,

hence if ai does not appear in the one-line notation for σ, then σ(a1, ai) sends a1 to ai.)

Like integers, permutations possess parity. Explicitly, we say that a permutation σ is even (or

odd, respectively) if σ can be expressed as a product of an even (or odd, respectively) number of

transpositions. We will assume that the identity permutation ι is even (see [JB21, Lemma 5.14]).

Exercise 1.12.56. Prove that a permutation σ is either even or odd but not both.

Exercise 1.12.57. Prove that a cycle of odd length is even and a cycle of even length is odd.

Exercise 1.12.58. Consider the collection An of even permutations on n letters.

(a.) Prove that An is a subgroup of Sn called the alternating group on n letters.

(b.) Compute the order of the alternating group A4 on four letters.

(Hint: Every cycle of odd length is even; all else in A4 is a product of disjoint transpositions.)

(c.) Use part (b.) above and Lagrange’s Theorem to compute the index [S4 : A4] of A4 in S4.

Exercise 1.12.59. Prove that for any regular n-gon, there are at most n! = n(n− 1)(n− 2) · · · 2 · 1
symmetries corresponding to rotation through an angle or reflection about a vertex.

Exercise 1.12.60. List all permutations of the integers {1, 2, 3, 4} corresponding to the rotations

and reflections of a regular 4-gon. Conclude that the upper bound of Exercise 1.12.59 can be strict.
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(Caution: Because there are an even number of vertices of the square, only two of the symmetry-

preserving reflections of the square will pass through a pair of vertices; however, there are other

symmetry-preserving reflections of the square that do not correspond to reflection about a vertex.)

Exercise 1.12.61. Conjecture the formula for the total number of symmetry-preserving rotations

and reflections of a regular n-gon; then, prove that your formula holds.

(Hint: Use the example of Section 1.6, your work from Exercise 1.12.60, and possibly an additional

example to spot the pattern and deduce a formula; then, use the Fundamental Counting Principle.)

Exercise 1.12.62. Consider the regular 3-gon of Section 1.6 whose vertices we labelled as 1, 2, 3 in

clockwise order. Consider the rotation ρk of the regular 3-gon through an angle of −120k degrees.

Explicitly, there are three distinct rotations ρ1, ρ2, and ρ3. Consider the reflection ϕk of the regular

3-gon about the vertex k. Explicitly, there are three distinct reflections ϕ1, ϕ2, and ϕ3. Given any

elements x, y ∈ {ρ1, ρ2, ρ3, ϕ1, ϕ2, ϕ3}, let yx denote the symmetry obtained by first performing x

and subsequently performing y. Explicitly, ϕℓρk is the operation of first rotating through an angle

of −120k degrees and then reflecting about the vertex ℓ of the original arrangement of the labels 1,

2, and 3. Complete the table below by computing yx according to the rows x and columns y.

x\y ρ1 ρ2 ρ3 ϕ1 ϕ2 ϕ3

ρ1 ρ2 ρ3 ϕ2

ρ2
ρ3
ϕ1 ϕ3 ρ3
ϕ2

ϕ3

Exercise 1.12.63. Verify the explanation of Example 1.6.3 by using pictures to illustrate how each

of the eight elements 1, r, r2, r3, s, rs, r2s, r3s of D4 acts on the square.

Exercise 1.12.64. Verify the explanation of Example 1.6.4 by using pictures to illustrate how each

of the ten elements 1, r, r2, r3, r4, s, rs, r2s, r3s, r4s of D5 acts on the regular pentagon.

Exercise 1.12.65. Prove that the dihedral group Dn of order 2n is not abelian for n ≥ 3.

(Hint: On the contrary, if rs = sr, then what can be said about r by Theorem 1.6.1?)

Exercise 1.12.66. Prove that the dihedral group Dn of order 2n admits elements x and y of order

two such that their product xy has order n. Conclude that the order of a product of two elements

of order two can be any positive integer exceeding two. Why does this not violate Exercise 1.12.38?

Exercise 1.12.67. Consider the center Z(Dn) = {x ∈ Dn | yx = xy for all y ∈ Dn} of the dihedral

group Dn of order 2n. Complete the following steps to prove the characterization of Z(Dn) below.

Z(Dn) =

{
{1} if n is odd and

{1, r n
2 } if n is even

https://brilliant.org/wiki/fundamental-counting-principle
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(i.) Every element of Dn is of the form risj for some integers 0 ≤ i ≤ n − 1 and 0 ≤ j ≤ 1. By

definition, for any element x ∈ Z(Dn), we must have that xr = rx. Conclude that if x = rks

for some integer 0 ≤ k ≤ n− 1, then xr ̸= rx, i.e., x is not an element of Z(Dn).

(ii.) Use step (i.) to prove that if x ∈ Z(Dn), then x = rk for some integer 0 ≤ k ≤ n− 1.

(iii.) On the other hand, for any element x ∈ Z(Dn), we must have that xs = sx. By the previous

step, we may assume that x = rk for some integer 0 ≤ k ≤ n − 1, hence we must have that

rks = srk. Use the identity sr = rn−1s to find that if x ∈ Z(Dn), then r
k = rnk−k.

(iv.) Cancelling a factor from both sides of the last identity of part (iii.), we find that rnk−2k = 1.

By Corollary 1.3.16, conclude that n | (nk − 2k).

(v.) Observe that if n | (nk− 2k), then there exists an integer q such that nk− 2k = nq. Conclude

that n | 2k, hence we must have that n = 0 or n = 2k. Ultimately, conclude the desired result.

Exercise 1.12.68. Prove that if n ≥ 4, then there exists a permutation σ ∈ Sn such that σ /∈ Dn.

Conclude that the dihedral group of order 2n is a proper subgroup of Sn for all integers n ≥ 4.

(Hint: Every element of Dn must do what to the consecutive clockwise vertices n, 1, and 2?)

Exercise 1.12.69. Prove that (a.) =⇒ (b.) =⇒ (c.) =⇒ (d.) of Proposition 1.7.4 hold.

Exercise 1.12.70. Use the One-Step Subgroup Test to establish that the rational numbers Q form

a subgroup of the additive group (R,+) of real numbers; then, prove that [R : Q] is infinite.

Exercise 1.12.71. Prove that for each nonzero integer n, we have that [Z : nZ] = |n|.

Exercise 1.12.72. Prove that if G is any group and H is any subgroup of G such that [G : H] = 2,

then we have that gH = Hg for all elements g ∈ G. Conclude that NG(H) = G.

Exercise 1.12.73. Given any group G and any subgroups H and K of G, consider the product

HK = {hk | h ∈ H and k ∈ K}

of Exercise 1.12.31. Prove that if H and K are finite sets, then |HK| = |H||K|
|H ∩K|

.

(Hint: Use Lagrange’s Theorem to express the right-hand side as a product of the cardinality of a

subgroup and the index of one group as a subgroup of another; then, prove that there is a bijection

between the set HK and the cosets of the subgroups used to construct the index.)

Euler’s totient function is the unique piecewise function ϕ : Z≥1 → Z≥1 defined by ϕ(1) = 1

and ϕ(n) = #{k | 1 ≤ k ≤ n− 1 and gcd(k, n) = 1} for all integers n ≥ 2. Explicitly, we note that

ϕ(n) is precisely the number of positive integers not exceeding n that are relatively prime to n.

Exercise 1.12.74 (Euler’s Theorem). Prove that |Z×
n | = ϕ(n) for every positive integer n. Use this

to deduce Euler’s Theorem that aϕ(n) ≡ 1 (mod n) for all integers a with gcd(a, n) = 1.

Exercise 1.12.75 (Fermat’s Little Theorem). Prove that |Z×
p | = p − 1 for every prime integer p.

Use this to deduce Fermat’s Little Theorem that ap−1 ≡ 1 (mod n) for all integers a with p ∤ a.
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Exercise 1.12.76. Consider any cyclic group G of order n. Exercise 1.12.41 implies that for each

positive integer d | n, there exists a cyclic subgroup of G of order d. Complete the following steps

to demonstrate that n is the sum of Euler’s totient function over its positive divisors, i.e., we have

that n =
∑

d|n ϕ(d) for Euler’s totient function ϕ : Z≥1 → Z≥1 defined before Euler’s Theorem.

(i.) Prove that every element of G lies in one and only one cyclic subgroup of order d | n. Conclude
that the cyclic subgroup of G of order d | n is unique, i.e., these subgroups partition G.

(ii.) Prove that for each positive integer d | n, there exist ϕ(d) generators for the cyclic subgroup

of G of order d. Conclude that the cyclic subgroup of order d contains exactly ϕ(d) elements.

(iii.) Combine the previous two parts to prove that n =
∑

d|n ϕ(d).

Exercise 1.12.77. Consider Euler’s totient function ϕ : Z≥1 → Z≥1 defined before Euler’s Theorem.

Complete the following steps to prove that ϕ(n) is an even integer for all integers n ≥ 3.

(i.) Conclude by Exercise 1.12.35 that there exists an element of order two in Z×
n .

(ii.) Conclude the desired result by Euler’s Theorem and Lagrange’s Theorem.

Exercise 1.12.78. Consider any group G with a normal subgroup H. Prove that ord(gH) | ord(g)
for every element g ∈ G. Conclude that max{ord(gH) | g ∈ G} ≤ max{ord(g) | g ∈ G}.

Exercise 1.12.79. Consider any group G with any subgroup H. Prove that if the index [G : H] of

H in G satisfies that [G : H] = 2, then H is a normal subgroup of G.

Exercise 1.12.80. Exhibit a non-cyclic group G and a normal subgroup H of G such that H and

G/H are cyclic. Conclude that the converse of the first statement of Proposition 1.8.8 is false.

(Hint: By Corollary 1.7.13 and Exercise 1.12.79, it suffices to find a non-abelian group G of order

4 = 2 · 2 and any subgroup H of G of order two. We have already encountered one.)

Exercise 1.12.81. Exhibit a non-abelian group G and a normal subgroup H of G such that H and

G/H are abelian. Conclude that the converse of the second statement of Proposition 1.8.8 is false.

(Hint: By Corollary 1.7.14 and Exercise 1.12.79, it suffices to find a non-abelian group G of order

6 = 2 · 3 and any subgroup H of G of order three. We have already encountered one.)

Exercise 1.12.82. Given any group G and any subgroups H and K of G, consider the product

HK = {hk | h ∈ H and k ∈ K}

of Exercises 1.12.31 and 1.12.73. Prove that if H is normal in G or K is normal in G, then HK is a

subgroup of G. Even more, prove that if H and K are both normal in G, then HK is normal in G.

Exercise 1.12.83. Consider any group G with a subgroup H and a normal subgroup N. Prove

that H ∩N is a normal subgroup of H. Conclude that H/(H ∩N) is a group.

Exercise 1.12.84. Consider any group G. Prove that if H is a subgroup of G such that no other

subgroup of G has the same order as H, then H must be a normal subgroup of G.

(Hint: Consider the function χg : H → gHg−1 defined by χg(h) = ghg−1. Use Exercise 0.6.41(a.).)
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Exercise 1.12.85. Consider the center Z(G) of some group G defined in Exercise 1.12.23.

(a.) Prove that Z(G) is a normal subgroup of G.

(b.) Prove that if H is any subgroup of G, then H ∩ Z(G) is a normal subgroup of Z(H).

(c.) Prove that if G/Z(G) is cyclic, then G is abelian.

Exercise 1.12.86. Consider the normalizer NG(H) of any groupH ≤ G defined in Exercise 1.12.26.

(a.) Prove that H is a normal subgroup of NG(H).

(b.) Prove that if K is a subgroup of G and H is a normal subgroup of K, then K is a subgroup of

NG(H). Conclude that NG(H) is the “largest” subgroup of G with H as a normal subgroup.

Given any element h ∈ H, consider the centralizer ZG(h) of h in G defined in Exercise 1.12.24. We

define the centralizer of H in G as the union of the centralizers of all elements h ∈ H in G, i.e.,

ZG(H) = {g ∈ G | gh = hg for all elements h ∈ H}.

(c.) Prove that ZG(H) is a subgroup of G.

(d.) Prove that H is a normal subgroup of ZG(H). Conclude that ZG(H) is a subgroup of NG(H).

(e.) Prove that ZG(H) is a normal subgroup of NG(H).

(Hint: By Proposition 1.8.1, it suffices to prove that for every triple of elements h ∈ H,

x ∈ NG(H), and g ∈ ZG(H), it holds that (xgx−1)h = h(xgx−1). Use the fact that for every

element x ∈ NG(H), there exists an element k ∈ H such that x−1hx = k by definition.)

Exercise 1.12.87. Consider the group of rational numbers (Q,+).

(a.) Prove that (Z,+) is a normal subgroup of (Q,+).

(b.) Prove that every element of the quotient group Q/Z has finite order.

(c.) Conclude that there exists a group of infinite order each of whose elements has finite order.

Exercise 1.12.88. Given any group G, we say that a proper normal subgroupM of G is maximal

if every normal subgroup N of G such that M ⊆ N ⊊ G satisfies that N =M. Prove that a proper

normal subgroup M of G is maximal if and only if G/M admits no proper non-trivial subgroups.

Exercise 1.12.89. Prove that every group G admits a maximal normal subgroup M.

Exercise 1.12.90. (Souvik Dey) Prove that a function f : (G, ∗) → (H, ⋆) defined between groups

is a group homomorphism if and only if the graph of f is a subgroup of G×H (see Example 0.1.30).

Exercise 1.12.91. Prove that if G is an abelian group of odd order, then for each element g ∈ G,

there exists a unique element h ∈ G such that h2 = g. Conclude with the delightful fact that in an

abelian group of odd order, every element admits a unique square root.

(Hint: Prove that the function φ : G→ G defined by φ(g) = g2 is a homomorphism. Compute its

kernel; then, use Lagrange’s Theorem to conclude that φ is in fact an isomorphism.)
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Exercise 1.12.92. Consider any group homomorphism φ : (G, ∗) → (H, ⋆).

(a.) Prove that kerφ is a normal subgroup of G.

(b.) Conversely, suppose that N is a normal subgroup of G. Prove that there exists a group (K, ·)
and homomorphism π : G→ K such that N = ker π. Conclude that the normal subgroups of

any group G are precisely the kernels of group homomorphisms from G.

Exercise 1.12.93. Consider the collection G of all groups. Prove that (G, ∗) R (H, ⋆) if and only

if there exists an isomorphism φ : (G, ∗) → (H, ⋆) is an equivalence relation on G.

We note that the equivalence classes of the above equivalence relation are called the isomorphism

classes of groups. Particularly, if there are n distinct equivalence classes of groups that satisfy a

property P , then we say that there are n groups that satisfy property P up to isomorphism.

Exercise 1.12.94. Prove that there is only one infinite cyclic group up to isomorphism.

Exercise 1.12.95. Prove that there is only one cyclic group of order n up to isomorphism.

Exercise 1.12.96. Consider any group G with a subgroup H such that [G : H] is finite. Prove

that there exists a normal subgroup N of G such that N ⊆ H and [G : N ] | [G : H]!.

(Hint: By Cayley’s Theorem (Theorem 3.4.1) and the First Isomorphism Theorem, it suffices to

find a group homomorphism from G to the symmetric group on the left cosets G/H of H in G

whose kernel is contained in H. Consider the function φ : G→ SG/H defined by φ(g)(xH) = gxH.)

Exercise 1.12.97. Consider any finite group G with a subgroup H such that [G : H] is the smallest

prime number p that divides |G|. Prove that H is a normal subgroup of G.

(Hint: We note that by Exercise 1.12.96, there exists a normal subgroup N of G such that N ⊆ H

and [G : N ] | p!. Even more, by Lagrange’s Theorem, we have that [G : H]|H| = |G| = [G : N ]|N |,
hence we find that p!|N | = [G : N ]|N |q = pq|H|. Conclude that |H| | |N | so that H = N.)

Exercise 1.12.98. Prove that (Q,+) and (Z,+) are not isomorphic.

(Hint: Compare the desired result with those of Exercise 1.12.32 and Proposition 1.9.18.)

Exercise 1.12.99. Prove that (R,+) and (Q,+) are not isomorphic.

Exercise 1.12.100. Prove that (Z× Z,+) and (Z,+) are not isomorphic.

(Hint: Consider the function φ : (Z× Z,+) → (Z,+) defined by φ(a, b) = a− b.)

Exercise 1.12.101. Given any group G with a normal subgroup K, consider any group H such

that there exists a group homomorphism φ : G→ H. (Use concatenation for all group operations.)

(a.) Prove that if L is a subgroup of H, then φ−1(L) is a subgroup of G.

(b.) Prove that if L is a normal subgroup of φ(G), then φ−1(L) is a normal subgroup of G.

(c.) Prove that φ(K) is a normal subgroup of φ(G).

(d.) Prove that if φ is an isomorphism, then we have that G/K ∼= H/φ(K).

(e.) Conclude that for every group isomorphism φ : G→ G, we have that G/K ∼= G/φ(K).

https://dylan-c-beck.github.io/ma383_MA383%20--%20Fall%202022%20Lecture%20Notes.pdf
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Exercise 1.12.102. Consider any finitely many groups G1, G2, . . . , Gn.

(a.) Prove that if Hi is a subgroup of Gi for each integer 1 ≤ i ≤ n, then H1 ×H2 × · · · ×Hn is a

subgroup of G1×G2×· · ·×Gn, hence the Cartesian product preserves the subgroup property.

(b.) Prove that if φi : Gi → Fi is a group homomorphism for each integer 1 ≤ i ≤ n, then the

induced function φ : G1 ×G2 × · · · ×Gn → F1 × F2 × · · · × Fn defined by

φ(g1, g2, . . . , gn) = (φ1(g1), φ2(g2), . . . , φn(gn))

is a homomorphism. Even more, prove that φ is injective if and only if φi is injective for each

integer 1 ≤ i ≤ n and φ is surjective if and only if φi is surjective for each integer 1 ≤ i ≤ n.

(c.) (First Isomorphism Theorem for External Direct Products) Prove that if φi : Gi → Fi

is a group homomorphism with kerφi = Ki for each integer 1 ≤ i ≤ n, then we have that

G1 ×G2 × · · · ×Gn

K1 ×K2 × · · · ×Kn

∼= φ1(G1)× φ2(G2)× · · · × φn(Gn).

(d.) (Factor Theorem for External Direct Products) Prove that if Hi is a normal subgroup

of Gi for each integer 1 ≤ i ≤ n, then we have that

G1 ×G2 × · · · ×Gn

H1 ×H2 × · · · ×Hn

∼=
G1

H1

× G2

H2

× · · · × Gn

Hn

.

Exercise 1.12.103. Consider any abelian groups G, H, and K with a compatible group operation

+. Prove that if G and H are cyclic, then every group homomorphism φ : G×H → K is uniquely

determined by φ(1G, 0H) and φ(0G, 1H) for the respective cyclic generators 1G and 1H of G and H.

Exercise 1.12.104. Prove that if a, b, and c are positive integers, then every group homomorphism

φ : Za × Zb → Zc must satisfy that c
gcd(a,c)

| φ(1, 0) or c
gcd(b,c)

| φ(0, 1). Conclude that there are no

surjective group homomorphisms φ : Za×Zb → Zc for any consecutive even integers 2 ≤ a ≤ b < c.

Exercise 1.12.105. Give an explicit isomorphism of the following groups onto some cyclic group.

(a.)
Z/4Z× Z/6Z

⟨(0, 1)⟩
(b.)

Z/4Z× Z/6Z
⟨(0, 3)⟩

(c.)
Z/4Z× Z/6Z

⟨(2, 2)⟩
(d.)

Z/4Z× Z/6Z
⟨(2, 3)⟩

Exercise 1.12.106. Consider the general linear group GL(2,R) = {A ∈ R2×2 | det(A) ̸= 0} and

the special linear group SL(2,R) = {A ∈ R2×2 | det(A) = 1}. Consider the set R× of nonzero real

numbers. Complete the following steps to prove that (GL(2,R)/ SL(2,R), ·) ∼= (R×, ·).

(i.) Prove that det(A) induces a homomorphism φ : GL(2,R) → (R×, ·) with kerφ = SL(2,R).

(ii.) Prove that φ is surjective. Conclude the desired result by the First Isomorphism Theorem.

Exercise 1.12.107. Consider the circle group T = {cos θ + i sin θ | θ ∈ R} under complex multi-

plication. Complete the following steps to prove that (R/Z,+) ∼= (T, ·).

(i.) Prove that the exponential function φ : (R,+) → (T, ·) defined by φ(θ) = eiθ = cos θ + i sin θ

is a surjective group homomorphism with kerφ = {2πn | n ∈ Z}.

(ii.) Prove that the function µ : (R,+) → (R,+) defined by µ(x) = 2πx is a group isomorphism.

(iii.) Conclude from parts (b.) and (c.) of Exercise 1.12.101 that (R/Z,+) ∼= (T, ·).



Chapter 2

Essential Topics in Ring Theory

Ring theory is the study of objects for which there exists a notion of addition and multiplication.

Common mathematical structures such as the real numbers, real polynomials, and real square ma-

trices are all examples of rings with respect to the appropriate notion of addition and multiplication.

Often, we assume a multiplicative identity and that the multiplication defined in a ring is commu-

tative, i.e., the order of two elements in a product does not matter. Broadly, this area of ring theory

is referred to as commutative algebra, and it involves more general algebraic structures associated

to rings. Commutative algebra hosts many interesting and challenging unresolved questions; how-

ever, the techniques inherent to the field can also be used to study objects arising in combinatorics,

geometry, number theory, and topology. Elsewhere, there exists a rich theory of non-commutative

rings; these sorts of rings arise naturally in relation to operator theory and topological ring theory.

2.1 Rings and Ring Homomorphisms

Consider any additive abelian group (R,+) equipped with a binary operation · : R × R → R that

sends (r, s) 7→ r · s. Crucially, observe that this operation is written multiplicatively. We say that R

forms a (unital) ring with respect to + and · if the triple (R,+, ·) satisfies the following properties.

RP(a.) We have that r · (s · t) = (r · s) · t for any elements r, s, t ∈ R, i.e., · is associative.

RP(b.) We have that r · (s+ t) = r · s+ r · t and (r + s) · t = r · t+ s · t for any elements r, s, t ∈ R,

i.e., · is distributive on both the left- and the right-hand side.

RP(c.) R admits an element 1R ∈ R such that 1R · r = r = r · 1R for all elements r ∈ R.

Caution: even though this situation is growing increasingly uncommon over time, it is possible at

this point to come across an author who defines a ring as an additive abelian group with multipli-

cation that satisfies properties (a.) and (b.) but not necessarily property (c.). We will refer to such

an object as a rng because it has no multiplicative “i”dentity; however, these authors refer to our

element 1R ∈ R as the unity of R, and they refer to our rings as unital rings or rings with unity.

Example 2.1.1. Consider the abelian group (Z,+). Certainly, multiplication of integers is associa-

tive and distributive, and the multiplicative identity of the integers is the integer 1. Consequently,

we conclude that (Z,+, ·) forms a commutative unital ring, as integer multiplication is commutative.

147
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Example 2.1.2. Consider the abelian group (nZ,+) for any nonzero integer n. Once again, mul-

tiplication of integers is associative, distributive, and commutative. Even more, if we take any pair

of integers na, nb ∈ nZ, then their product (na)(nb) = n2ab = n(nab) lies in nZ, hence nZ is closed

under integer multiplication; however, unless we impose the condition that n = ±1, there does not

exist an integer of the form na such that (na)(nb) = nb for all integers b. Consequently, we conclude

that (nZ,+, ·) forms a commutative rng; in particular, nZ is not unital except when n = ±1.

Example 2.1.3. Consider the abelian group (Z/nZ,+) for any positive integer n. We may define

multiplication on Z/nZ by declaring (a + nZ)(b + nZ) = ab + nZ. We claim that (Z/nZ,+, ·) is a
commutative unital ring with respect to this multiplication since integer multiplication is associative,

commutative, distributive, and the left coset 1+nZ is the multiplicative identity of Z/nZ. Consider
any left coset representatives a+nZ = c+nZ and b+nZ = d+nZ. Observe that a = a+n · 0 is an

element of a+ nZ, hence there exists an integer r with a = c+ nr. Likewise, there exists an integer

s with b = d+ns. Consequently, we have that ab = (c+nr)(d+ns) = cd+n(cs)+n(dr)+n(nrs).

We conclude therefore that ab+nZ = [cd+n(cs)+n(dr)+n(nrs)] +nZ = cd+nZ by Proposition

1.7.4 because the left cosets [n(cs) + n(dr) + n(nrs)] + nZ and 0 + nZ are equal; this shows that

the multiplication on Z/nZ is well-defined, hence (Z/nZ,+, ·) is a commutative unital ring.

Example 2.1.4. Consider the collection R[x] of real univariate polynomials in indeterminate x. One

might recall from linear algebra that R[x] is a real vector space (of infinite dimension), hence R[x] is
an abelian group under polynomial addition. Even more, polynomial multiplication is associative,

commutative, and distributive, and the multiplicative identity of R[x] is the constant polynomial

p(x) = 1. Consequently, it follows that (R[x],+, ·) is a commutative unital ring. Generally, if R is

any rng, then we may define the polynomial rng R[x] in indeterminate x by generalizing the usual

polynomial addition such that rix
i+ six

i = (ri+ si)x
i and by declaring that (rix

i)(sjx
j) = risjx

i+j.

Consequently, it follows that R[x] is a rng that is commutative if and only if R is commutative and

unital if and only if R is unital. We will study polynomial rngs in greater depth in Section 3.1.

Example 2.1.5. Consider the abelian group (Rn×n,+) of real n×n matrices under matrix addition.

By elementary linear algebra, we recall that matrix multiplication is associative and distributive,

and the product of two real n× n matrices is itself a real n× n matrix; the n× n identity matrix I

satisfies that IA = A = AI for all real n× n matrices A, hence we find that I is the multiplicative

identity of Rn×n. Consequently, it follows that Rn×n is a unital ring; however, it is not commutative

except when n = 1. Explicitly, the following real 2× 2 matrices do not commute with one another.

AB =

(
1 2

3 4

)(
1 −1

1 1

)
=

(
3 1

7 1

)
BA =

(
1 −1

1 1

)(
1 2

3 4

)
=

(
−2 −2

4 6

)
Considering that we may realize this pair of non-commuting real 2× 2 matrices A and B as 2× 2

submatrices of any real n× n matrices with n ≥ 2, it follows that Rn×n is not commutative.

Example 2.1.6. Consider the collection F (R,R) of real univariate functions f : R → R. Exercise
1.12.5 shows that F (R,R) forms an abelian group with respect to function addition. Even more,

function composition is associative and distributive with the identity function defined by idR(x) = x.

Consequently, it follows that F (R,R) forms a unital ring with respect to function composition.
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On the other hand, it is also entirely valid to define multiplication of functions according to the

rule (fg)(x) = f(x)g(x). Explicitly, under this assignment, the product of functions corresponds to

pointwise multiplication of their images. Observe that with respect to this product, the constant

function f(x) = 1 satisfies that (fg)(x) = g(x) = (gf)(x) for all real x, hence it is the multiplicative

identity of (F (R,R), ·). Considering that multiplication of real numbers is associative, distributive,

and commutative, it follows that F (R,R) is a commutative unital ring with respect to this product.

Example 2.1.7. Consider any finite collections of rngs R1, . . . , Rn. Exercise 1.12.XX shows that

the external direct product R1×· · ·×Rn is an additive abelian group with respect to componentwise

addition. Likewise, one can show that R1×· · ·×Rn is closed under componentwise multiplication so

that R1× · · ·×Rn is a rng with respect to componentwise addition and multiplication. We refer to

this rng as the direct product of R1, . . . , Rn. Even more, as before, the properties of R1×· · ·×Rn

are intimately connected with those of the constituent rngs R1, . . . , Rn. Concretely, we have that

1.) R1 × · · · ×Rn is a unital ring if and only if R1, . . . , Rn are unital rings and

2.) R1 × · · · ×Rn is commutative if and only if R1, . . . , Rn are commutative.

Explicitly, for the first property, the multiplicative identity must be the n-tuple (1R1 , . . . , 1Rn).

Going forward, we will often omit the multiplicative notation · of a rng R and simply resort to

the usual concatenation of rng elements, e.g., r·s = rs that we had used in our study of group theory.

We will find that the properties of a rng R will either be discovered anew or inherited from the

additive abelian group structure of R. Considering that (R,+) is an abelian group, for every element

r ∈ R, the additive inverse of r is the element −r ∈ R satisfying that r + (−r) = 0R = (−r) + r

for the additive identity element 0R ∈ R. Consequently, for any element r ∈ R and any integer n,

we have that n · r = r+ r+ · · ·+ r with n summands if n ≥ 0 and n · r = (−r) + (−r) + · · ·+ (−r)
with n summands if n < 0. Our next proposition demonstrates that the additive and multiplicative

binary operations of a rng interact with each other in a civilized and intuitive manner.

Proposition 2.1.8 (Basic Rng Properties). Consider any rng (R,+, ·) with additive identity 0R.

1.) We have that 0Rr = 0R = r0R for all elements r ∈ R.

2.) We have that r(−s) = −(rs) = (−r)s for all elements r, s ∈ R.

3.) We have that (−r)(−s) = rs for all elements r, s ∈ R.

4.) If R is unital, then its multiplicative identity 1R is unique.

Proof. (1.) By definition of the additive identity element of R, for every element r ∈ R, we have

that 0Rr = (0R + 0R)r = 0Rr + 0Rr by the distributive property. Cancelling one summand of 0Rr

from both sides of this identity illustrates that 0Rr = 0R; the fact that r0R = 0R follows similarly.

(2.) Observe that the additive inverse of an element of an additive abelian group is unique by

Proposition 1.2.2, hence it suffices to prove that rs+ r(−s) = 0R for all elements r, s ∈ R. But this

holds by the distributive property of R: we have that rs+ r(−s) = r(s+ (−s)) = r0R = 0R.

(3.) Like before, we have that (−r)(−s)− (rs) = (−r)(−s) + r(−s) = ((−r) + r)(−s) = 0R.

(4.) Consider the multiplicative identity 1R of R. Given any element 1 ∈ R such that 1r = r = r1

for all elements r ∈ R, it follows that 1 = 1R1 = 1R: on the left-hand side, we use the property of

1R as the multiplicative identity of R, and on the right-hand side, we use the property of 1.
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Proposition 2.1.9 (Rng Exponent Laws). Consider any rng R and any integers m,n ≥ 0.

1.) We have that rmrn = rm+n for any element r ∈ R.

2.) We have that (rm)n = rmn for any element r ∈ R.

3.) If R is commutative, then (r1r2)
n = rn1 r

n
2 for all elements r1, r2 ∈ R.

Remark 2.1.10 (Existence of Multiplicative Inverses). Unlike the defining property of a multiplica-

tive group, it is not true that every nonzero element r of a rng (R,+, ·) must possess a multiplicative

inverse in R. Concretely, a rng R only carries the structure of a semigroup under multiplication;

therefore, a unital ring may only be viewed as a monoid under multiplication and not necessarily

a group. We cannot understate this fact: if r is a generic nonzero element of a rng R, the element

r−1 may not exist! Consequently, if there exists a nonzero element s ∈ R such that rs = 1R = sr,

then we refer to r as a unit. Occasionally, we may think of a unit r as an invertible element of R.

Exercise 2.7.6 yields that such an element s is unique to r; it is called the multiplicative inverse

of r, and it is denoted by s = r−1. We reiterate that we make no assumption that every nonzero

element of R has a multiplicative inverse; in fact, a unital ring with this property is called a skew

field, and a commutative unital ring in which every nonzero element is a unit is called a field. We

will henceforth adopt the notation U(R) to denote the collection of units of a unital ring R.

Example 2.1.11. We have seen in Example 1.1.7 that the only integers with multiplicative inverses

in Z are 1 and −1. Consequently, the units of the ring Z are 1 and −1, i.e., U(Z) = {1,−1}.

Example 2.1.12. Consider the commutative unital ring Z/nZ for any positive integer n. Observe

that a + nZ is a unit of Z/nZ if and only if ab + nZ = (a + nZ)(b + nZ) = 1 + nZ for some left

coset b+nZ if and only if ab+n(−q) = 1 for some integer q. By Bézout’s Identity, a+nZ is a unit

of Z/nZ if and only if gcd(n, a) = 1, hence we have that |U(Z/nZ)| = ϕ(n) by Exercise 1.12.74.

Example 2.1.13. Given any real n×n matrix A, we have that A is a unit of Rn×n if and only if A

is invertible if and only if det(A) is nonzero. Consequently, the units of the unital ring of real n×n

matrices are precisely the real invertible n× n matrices, i.e., we have that U(Rn×n) = GL(n,R).

Example 2.1.14. Observe that a real number x is a unit of the ring of real numbers R if and only

if x is nonzero if and only if x ∈ R×. Consequently, we conclude that U(R) = R× and R is a field.

Like with groups, we are concerned with structure-preserving functions of rngs R and S. We say

that a function φ : R → S is a rng homomorphism if and only if for all elements r1, r2 ∈ R,

RH(1.) φ(r1 + r2) = φ(r1) + φ(r2), i.e., φ is a group homomorphism and

RH(2.) φ(r1r2) = φ(r1)φ(r2), i.e., φ is compatible with multiplication.

Even more, if both R and S are unital rings, then we impose a third condition that

RH(3.) φ(1R) = 1S, i.e., the multiplicative identity of R maps to the multiplicative identity of S.

We say that φ is a unital ring homomorphism if it satisfies property (3.). Like with multiplicative

inverses, this third condition serves to underline the fundamental differences between groups and

rngs: we require in the definition of a unital ring homomorphism that φ(1R) = 1S; however, for
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a group homomorphism, it is possible to prove from the definition and the group axioms that the

identity element of one group maps to the identity element of the other group under any group

homomorphism. Concretely, we cannot derive such a conclusion in this case because we cannot a

priori guarantee that φ(1R) is a unit of S. Examples of rng homomorphisms will illustrate this idea.

Example 2.1.15. Consider the rng nZ and the unital ring Z for some positive integer n. We may

define a rng homomorphism φ : nZ → Z by declaring that φ(na) = na: indeed, for any pair of

elements na, nb ∈ nZ, we have that φ(na+nb) = φ(n(a+ b)) = n(a+ b) = na+nb = φ(na)+φ(nb)

and φ((na)(nb)) = φ(n(nab)) = n(nab) = (na)(nb) = φ(na)φ(nb). On the other hand, unless we

assume that n = 1, then nZ does not possess a multiplicative identity, so we are done.

Example 2.1.16. Consider the function φ : Z → Z defined by φ(n) = 2n. Even though it holds

that φ(m + n) = 2(m + n) = 2m + 2n = φ(m) + φ(n), we have that φ(mn) = 2mn is not equal

to φ(m)φ(n) = (2m)(2n) = 4mn unless one of m or n is zero. Consequently, φ is not a unital ring

homomorphism. Generally, we note that a function ψ : Z → Z is a unital ring homomorphism if

and only if ψ(n) = ψ(1+1+ · · ·+1) = ψ(1)+ψ(1)+ · · ·+ψ(1) = nψ(1) for all integers n; moreover,

a unital ring homomorphism ψ : Z → Z must satisfy that ψ(1) = 1 so that ψ(n) = n for all integers

n, i.e., the only unital ring homomorphism from Z to itself is the identity homomorphism.

Example 2.1.17. Given any unital ring R, let us classify all unital ring homomorphisms φ : Z → R.

Once again, by Conditions RH(1.) and RH(3.), we have that φ is a unital ring homomorphism only

if for all integers n, it holds that φ(n) = φ(1+1+ · · ·+1) = φ(1)+φ(1)+ · · ·+φ(1) = nφ(1) = n1R.

Consequently, the only unital ring homomorphism φ from Z to a unital ring R is the multiplication

function φ(n) = n1R. On the other hand, if we assume that S is any rng, then a rng homomorphism

ψ : Z → S is uniquely determined by ψ(1) because we have that ψ(n) = nψ(1) by the previous

computation. Considering that we are not imposing any additional structure on S, it follows that

ψ(1) could be anything in this case and ψ can be viewed simply as multiplication by ψ(1).

Like with group homomorphisms, we refer to a bijective rng homomorphism as a rng isomor-

phism. We say that the rngs R and S are isomorphic if there exists a rng isomorphism φ : R → S,

and we write R ∼= S. We will come to find that it is more difficult to find rng homomorphisms (and

hence rng isomorphisms) than it was to find group homomorphisms (isomorphisms) because a rng

homomorphism must satisfy additional properties. Explicitly, Exercises 2.7.12 and 2.7.47 underscore

the key differences between the group structure and the rng structure of certain familiar sets.

Given any rng homomorphism φ : R → S, as with group homomorphisms, we are interested in

the kernel of φ, i.e., kerφ = {r ∈ R | φ(r) = 0S}. Considering that kernel membership is a property

of the addition in R, the following can be deduced directly from Proposition 1.9.6.

Proposition 2.1.18 (Kernels and Injectivity). Given any rng homomorphism φ : R → S, we have

that φ is injective if and only if the kernel of φ is the trivial subgroup of R, i.e., kerφ = {0R}.

Example 2.1.19. Consider the diagonal function φ : Z → Z× Z defined by φ(n) = (n, n). Given

any elements m,n ∈ Z, we have that φ(m+ n) = (m+ n,m+ n) = (m,m) + (n, n) = φ(m) + φ(n)

and φ(mn) = (mn,mn) = (m,m)(n, n) = φ(m)φ(n). Even more, we have that φ(1) = (1, 1) is the

multiplicative identity of Z × Z, hence φ is a unital ring homomorphism. We note that n ∈ kerφ

if and only if φ(n) = (0, 0) if and only if (n, n) = (0, 0) if and only if n = 0, hence φ is injective.

On the other hand, observe that (−n, n) is not in the image of φ for any integer n, hence φ is not

surjective. Even still, as φ is injective with image φ(Z), we have that Z ∼= φ(Z) = {(n, n) | n ∈ Z}.
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Example 2.1.20. Consider the complex conjugation map φ : C → C defined by φ(a+ bi) = a− bi.

Concretely, we have that φ(z) = z̄. Given any real numbers a and b, we have that

φ((a+ c) + (b+ d)i) = (a+ c)− (b+ d)i = (a− bi) + (c− di) = φ(a+ bi) + φ(c+ di) and

φ((ac− bd) + (ad+ bc)i) = (ac− bd)− (ad+ bc)i = (a− bi)(c− di) = φ(a+ bi)φ(c+ di).

Even more, we have that φ(1+ 0i) = 1− 0i = 1+0i, hence φ sends the multiplicative identity of C
to itself. We conclude that φ is a unital ring homomorphism. Last, we note that a + bi ∈ kerφ if

and only if a− bi = 0 + 0i if and only if a = 0 and b = 0, hence φ is injective. Even more, for any

complex number z = a+ bi, observe that z = a+ bi = a− (−b)i = φ(a− bi) = φ(z̄). We conclude

that φ is a unital ring isomorphism. We have also demonstrated in the course of this example that

1.) given any complex numbers z1 and z2, we have that z1 + z2 = z̄1 + z̄2;

2.) given any complex numbers z1 and z2, we have that z1z2 = z̄1z̄2; and

3.) given any complex number z, we have that z = z.

Put another way, complex conjugation is an additive, multiplicative, and idempotent operation.

Given any unital ring R, we demonstrated in Example 2.1.17 that every unital ring homomor-

phism φ : Z → R is defined by φ(n) = n1R. By definition, kerφ consists of all integers n such that

n1R = 0R.We refer to the characteristic char(R) of R as the smallest (with respect to divisibility)

positive integer n for which n1R = 0R. Conventionally, if n1R is nonzero for all positive integers n

(i.e., if every ring homomorphism from the integers Z to the unital ring R is injective), then the

characteristic of R is defined as zero; otherwise, the characteristic of R is a positive integer.

Example 2.1.21. Certainly, the commutative unital rings Z, Q, R, and C have characteristic zero:

indeed, in each of these rings, we have that n+ 0i = n(1 + 0i) = 0 + 0i if and only if n = 0.

Example 2.1.22. Consider the commutative unital ring Z/nZ for some positive integer n. Each of

the left cosets k(1 + nZ) = k + nZ is nonzero for each integer 1 ≤ k ≤ n − 1. On the other hand,

we have that n(1 + nZ) = n+ nZ = 0 + nZ, hence we conclude that char(Z/nZ) = n.

Given any nonempty set S ⊆ R, we say that S is a subrng of R whenever (S,+, ·) is a rng with

respect to the prescribed binary operations of R. Often, in order to determine if S ⊆ R is a subrng

of R, it is most practical and convenient to use the following generalization of the Subgroup Test.

Proposition 2.1.23 (Subrng Test). Given any rng (R,+, ·), consider any subset S ⊆ R. We have

that (S,+, ·) is a subrng of R if and only if the following three conditions hold.

(a.) We have that S is nonempty.

(b.) We have that rs ∈ S for all elements r, s ∈ S.

(c.) We have that r − s ∈ S for all elements r, s ∈ S.

Even more, if R is commutative, then S is commutative. Likewise, if R is a unital ring such that S

contains the multiplicative identity 1R of R, then S is a unital ring with multiplicative identity 1R.
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Proof. We note that if S is any subset of R that satisifies the first and third conditions above, then

(S,+) is a subgroup of (R,+) by the One-Step Subgroup Test. Even more, if S satisfies the second

condition, then multiplication in R is a binary operation on S; this multiplication is associative and

distributive on S because every element of S may be viewed as an element of R.

Conversely, if S is a subrng of R, then (S,+) is a subgroup of (R,+) and S must contain the

additive identity 0R by the Subgroup Test. Even more, we must have that r−s ∈ S for all elements

r, s ∈ R by the One-Step Subgroup Test. Last, we must have that rs ∈ S for all elements r, s ∈ R:

the multiplication of R must be a binary operation on S in order for (S,+, ·) to constitute a rng.

We turn our attention now to the inheritance of properties of R. Certainly, if R is commutative,

then any subrng S of R is commutative because the elements of S can be viewed as elements of R.

Further, if R is a unital ring with multiplicative identity 1R and S is a subrng of R that contains 1R,

then by Proposition 2.1.8, we conclude that S is a unital ring with multiplicative identity 1R.

Caution: the Subrng Test does not imply that a unital ring has the same multiplicative identity as

any overring; in fact, it is possible to find a unital subring S of a unital ring R whose multiplicative

identity 1S is distinct from the multiplicative identity 1R of R (see Exercises 2.7.24 and 2.7.39).

Example 2.1.24. Each of the subset containments Z ⊊ Q ⊊ R ⊊ C induces a subring containment.

Each of the commutative unital rings has the same multiplicative identity 1 + 0i.

Example 2.1.25. Consider the commutative unital ring Z/nZ for some positive integer n. By the

Fourth Isomorphism Theorem, the subgroups of Z/nZ are precisely kZ/nZ such that nZ ⊆ kZ;
this holds if and only if n ∈ kZ if and only if k divides n. Consequently, the only possible subrngs

of Z/nZ are kZ/nZ for each positive integer k | n; these are subrngs because kZ is closed under

multiplication and subtraction, hence the cosets of nZ in kZ are closed under these operations.

Below, we provide several useful properties that relate rng homomorphisms and subrngs.

Proposition 2.1.26 (Basic Structural and Computational Properties of Rng Homomorphisms).

Consider any rng homomorphism φ : R → S. Each of the following properties of φ holds.

1.) We have that φ(0R) = 0S.

2.) We have that φ(r − s) = φ(r)− φ(s) for all elements r, s ∈ R.

3.) Given any subrng T ⊆ R, we have that φ(T ) is a subrng of S.

4.) Given that φ is surjective and R is a unital ring, we have that S is a unital ring. Explicitly,

if the multiplicative identity of R is 1R, then the multiplicative identity of S is φ(1R).

5.) Given that φ is surjective and R is a unital ring, then for any unit u ∈ R with multiplicative

inverse u−1, we have that φ(u) is a unit of S with multiplicative inverse φ(u)−1 = φ(u−1).

We conclude this section with the following crucial property of the kernel of a rng homomorphism.

Proposition 2.1.27 (Rng Structure of the Kernel). Given any rng homomorphism φ : R → S, we

have that kerφ is a subrng of R that is closed under left- and right-multiplication by elements of R.

We leave the proofs of the above propositions as Exercises 2.7.13 and 2.7.14 for the reader.
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2.2 Ideals and Quotient Rings

Given any rng (R,+, ·), a left ideal of R is any subrng I ⊆ R that is closed under left multiplica-

tion by elements of R; the analogous statement defines the right ideals of R; and ideals that are

closed under multiplication on the left and right by elements of R are called two-sided ideals. By

Proposition 2.1.27, the kernel kerφ of any rng homomorphism φ : R → S is a two-sided ideal of R.

Proposition 2.2.1 (Two-Sided Ideal Structure of the Kernel of a Rng Homomorphism). Given

any rng homomorphism φ : R → S, we have that kerφ is a two-sided ideal of R.

Often, we will deal with commutative rngs, hence we will not qualify ideals as two-sided because

any left ideal of a commutative rng is automatically right ideal by commutativity (and vice-versa);

however, in the case that R is non-commutative, we must distinguish between left ideals and right

ideals. We say that an ideal I of a rng R is proper if it holds that I ⊊ R. Observe that a proper

ideal I of a unital ring R cannot contain the multiplicative identity 1R of R: indeed, if 1R lies in I,

then by definition, we must have that r = r1R lies in I for all elements r ∈ R so that I = R.

Example 2.2.2. Observe that nZ is an ideal of the commutative unital ring Z for any non-negative

integer n: it is a nonempty subrng of Z satisfying that s(nr) = n(rs) ∈ nZ for any integers r and s.

Example 2.2.3. Consider the non-commutative unital ring Rn×n consisting of real n×nmatrices for

some positive integer n ≥ 2. Consider the set I ⊆ Rn×n of all real n×n matrices whose first column

consists entirely of zeros. Certainly, the zero matrix O lies in I, hence I is nonempty. Given any

elements A,B ∈ I, we have that A−B lies in I since matrix addition is performed componentwise

and the first columns of A and −B consist entirely of zeros. Last, matrix multiplication is carried

out row-by-column, hence the first column of AB must consist entirely of zeros: explicitly, the first

column of AB is determined by the dot product of the rows of A with the first column of B, so it is

zero by assumption that the first column of B is zero. Consequently, we conclude that I is a subrng

of Rn×n. We claim that I is a left ideal but not a right ideal. By the same rationale as before, for

any real n× n matrix A and any real n× n matrix B whose first column consists entirely of zeros,

the first column of AB must be zero, hence I is closed under multiplication on the left. On the

other hand, the first column of BA is determined by the dot product of the rows of B with the

first column of A, so if the first row of B is nonzero and the first column of A is nonzero, then it is

possible that the first column of BA is nonzero, hence I is not closed under right multiplication.

Like with subrngs, there is a simple test to determine if a nonempty subset of a rng is an ideal.

Proposition 2.2.4 (Three-Step Ideal Test). Given any rng R, consider any nonempty subset I ⊆ R.

We have that I is a two-sided ideal of R if and only if the following three conditions hold.

1.) We have that i− j ∈ I for all elements i, j ∈ I.

2.) We have that ri ∈ I for all elements r ∈ R and i ∈ I.

3.) We have that ir ∈ I for all elements r ∈ R and i ∈ I.

Generally, if a nonempty set I ⊆ R satisfies only the first and second conditions, then I is a left

ideal of R. Likewise, if I satisfies only the first and third conditions, then I is a right ideal of R.
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Proof. By definition, a two-sided ideal I of R is a subrng of R that is closed under multiplication by

elements of R. Consequently, if I is a two-sided ideal of R, then I must satisfy the three conditions

above. Conversely, if I satisfies the first condition above, then by the One-Step Subgroup Test,

we conclude that (I,+) is a subgroup of (R,+). Even more, if I satisfies the second and third

conditions, then I is closed under multiplication by elements of R, hence I is a subrng of R (by the

Subrng Test) that is closed under multiplication by elements of R, i.e., a two-sided ideal of R.

Like with groups, we may consider ideals generated by a subset of elements of R.

Proposition 2.2.5. Given any elements x1, . . . , xn of any commutative rng R, we have that

(x1, . . . , xn) = {r1x1 + · · ·+ rnxn | r1, . . . , rn ∈ R}

is a two-sided ideal of R called that is said to be finitely generated by x1, . . . , xn.

Proof. We note that (x1, . . . , xn) contains 0R = 0Rx1 + · · ·+ 0Rxn by Proposition 2.1.8, hence this

set is nonempty. By the Three-Step Ideal Test, to prove that (x1, . . . , xn) is an ideal of R, it suffices

to show closure under subtraction and multiplication by elements of R. Both of these properties are

straightforward to verify by the distributive property and commutativity: indeed, we have that

(r1x1 + · · ·+ rnxn)− (s1x1 + · · ·+ snxn) = (r1 − s1)x1 + · · ·+ (rn − sn)xn and

r(r1x1 + · · ·+ rnxn) = r(r1x1) + · · ·+ r(rnxn) = (rr1)x1 + · · ·+ (rrn)xn

for any elements r ∈ R and r1x1 + · · · + rnxn ∈ (x1, . . . , xn) by the associativity of multiplication.

We conclude that (x1, . . . , xn) is a left ideal of R; it is a right ideal of R since R is commutative.

Caution: if R is not a unital ring, then it is not necessarily the case that the ideal (x1, . . . , xn) of R

generated by x1, . . . , xn contains the elements x1, . . . , xn themselves. Consequently, we will restrict

our attention to commutative unital rings when investigating these types of ideals.

Proposition 2.2.6 (Containment of Finitely Generated Ideals). Given elements x1, . . . , xn and any

ideal I of a commutative unital ring R, we have that (x1, . . . , xn) ⊆ I if and only if x1, . . . , xn ∈ I.

Proof. Consider any ideal I ⊆ R such that x1, . . . , xn ∈ I. We have that r1x1, . . . , rnxn ∈ I for

all possible elements r1, . . . , rn ∈ R because I is an ideal of R and must therefore be closed under

multiplication by elements of R. Even more, we have that r1x1+ · · ·+rnxn ∈ I because I is an ideal

of R and must therefore be closed under addition because it is a subrng of R.We conclude therefore

that (x1, . . . , xn) ⊆ I. Conversely, every ideal I ⊇ (x1, . . . , xn) must contain each of the generators

x1, . . . , xn since it holds that xi = 1Rxi = 0Rx1 + · · ·+ 0Rxi−1 + 1Rxi + 0Rxi+1 + · · ·+ 0Rxn.

Corollary 2.2.7. Given any elements x1, . . . , xn of any commutative unital ring R, the finitely gen-

erated ideal (x1, . . . , xn) is the smallest ideal of R (with respect to inclusion) that contains x1, . . . , xn.

Example 2.2.8. Consider the polynomial ring Z[x]. We form the ideal I = (x2− 1, x3−x, x4−x2)

all integer polynomials of the form p(x)(x2 − 1) + q(x)(x3 − x2) + r(x)(x4 − x2). Considering that

x3 − x = x(x2 − 1) and x4 − x2 = x2(x2 − 1), it follows that I ⊆ (x2 − 1) since every polynomial in

I has a factor of x2 − 1. Conversely, it is clear that (x2 − 1) ⊆ I by Proposition 2.2.6 since we have

that x2 − 1 ∈ I. We conclude in this case that I = (x2 − 1, x3 − x, x4 − x2) = (x2 − 1).
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Example 2.2.9. Consider the commutative unital ring F (R,R) of functions f : R → R under

pointwise multiplication (fg)(x) = f(x)g(x). We may form the ideal (x, sinx, cosx) of all functions

of the form xf(x)+(sinx)g(x)+(cosx)h(x) for some real functions f(x), g(x), and h(x). Of course,

each of the functions x, sinx, and cos x lies in F (R,R), hence it is also the case that the function

sin2(x) + cos2(x) = 1 lies in this ideal. Consequently, (x, sinx, cosx) is in fact F (R,R) in disguise.

Given any element x of a commutative rng R, we refer to the ideal (x) = Rx = {rx | r ∈ R} as

the principal ideal generated by x; this is the case of Proposition 2.2.5 using only one generator.

Even more, we say that a collection of generators x1, . . . , xn of an ideal (x1, . . . , xn) is a minimal

system of generators whenever {x1, . . . , xn} \ {xi} does not generate I for any integer 1 ≤ i ≤ n.

Put another way, if we delete one generator, then we obtain an ideal that is strictly contained in I.

If an ideal I admits a finite system of generators, we say that I is finitely generated.

Example 2.2.10. Considering that every integer n can be written as a sum of |n| copies of ±1,

it follows that the commutative unital ring (Z,+, ·) is finitely generated by 1, i.e., Z = (1). Even

more, Z admits a minimal system of generators consisting of n integers for each integer n ≥ 1.

Explicitly, for any integer n ≥ 1 and any collection of n distinct prime numbers p1, . . . , pn, the

positive integers xi = p1 · · · pn/pi satisfy that gcd(x1, . . . , xn) = 1, hence Bézout’s Identity yields

that a1x1 + · · ·+ anxn = 1 for some integers a1, . . . , an. Consequently, we may view Z as an ideal of

itself generated by (x1, . . . , xn). Even more, this system of generators is minimal since the greatest

common divisor of the integers in the set {x1, . . . , xn} \ {xi} is in fact the prime number pi. Put

another way, the ideal generated by {x1, . . . , xn} \ {xi} is the principal ideal piZ and not Z.

Our next proposition establishes that the generators of an ideal are not unique; rather, they can

be chosen strategically so that the presentation of the ideal is as simple as possible.

Proposition 2.2.11. Let R be a commutative unital ring with an ideal I = (x1, . . . , xn). Consider

the ideal J = (x1, . . . , xi−1, u1x1 + · · · + unxn, xi+1, . . . , xn) for some units u1, . . . , un ∈ R, i.e., the

ideal of R generated by the elements of {x1, . . . , xn, u1x1 + · · ·+ unxn} \ {xi}. We have that I = J.

Proof. We can immediately verify that J ⊆ I by Proposition 2.2.6 because each of the generators

of J is itself an element of I. Conversely, each of the generators xj of I for j ̸= i is an element of J,

hence it suffices to prove that xi is in J. Observe that uixi = u1x1 + · · · + unxn +
∑

j ̸=i(−uj)xj is

an element of J so that xi = 1Rxi = (u−1
i ui)xi = u−1

i (uixi) is in J. We conclude that I ⊆ J.

Example 2.2.12. Let us find the simplest system of generators for the ideal I = (4, 6) in Z. Every
element of I can be written as 4m + 6n = 2(2m + 3n), from which it follows that (4, 6) ⊆ (2).

Conversely, we have that 2 = 4(−1) + 6(1) is an element of I, hence we must have that I = (2).

Example 2.2.13. Let us find the simplest system of generators for the ideal I = (2, 4, 6, 9) in Z.
Observe that −4 · 2+ 0 · 4+ 0 · 6+ 1 · 9 = 1 is an element of I, hence we conclude that I = Z = (1).

Exercise 2.7.45 demonstrates that the previous examples are indicative of a general phenomenon.

Example 2.2.14. Consider the ideal I = (x2 − 1, x3 + 1, x3 − x2) of R[x]. By Proposition 2.2.11,

we can replace any of the generators of I by a linear combination of the generators so long as the

coefficients of this linear combination are units of R[x]. Particularly, we may replace x4 − x2 by

x4 − 1 = (x4 − x2) + (x2 − 1). On the other hand, we have that x4 − 1 = (x2 − 1)(x2 + 1), hence

every polynomial of the form p(x)(x4− 1) can now be realized as a polynomial p(x)(x2+1)(x2− 1),
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and we can dispose of the generator x4 − x2 of I. Likewise, we have that x3 − x = x(x2 − 1), hence

every polynomial of the form q(x)(x3 − x) can be realized as a polynomial q(x)x(x2 − 1), and we

can dispose of the generator x3 − x. Consequently, we find that I = (x2 − 1).

We will now discuss how to construct important new ideals by performing set and rng operations

on existing ideals. Given any left ideals I and J of a rng R, it is natural to consider the behavior

of I and J with respect to set operations such as intersection and union. By Exercise 2.7.28, the

intersection I ∩ J of left ideals is a left ideal; however, it is rarely the case that the union I ∪ J of

ideals is an ideal of R. Even more, considering that I and J are normal subgroups of the abelian

group (R,+), it is possible by Exercise 1.12.31 to form the normal subgroup I + J of (R,+); it is

not difficult to check that I + J is a left ideal of R. Last, if I is a left ideal and J is a right ideal,

we may also define the product ideal IJ = {i1j1 + · · ·+ injn | n ≥ 1, i1, . . . , in ∈ I, j1, . . . , jn ∈ J}
of I and J. Crucially, notice the definition of this two-sided ideal as the set of all possible sums

of products of an element of I and an element of J. Even though it is most natural to hope that

I ∗J = {ij | i ∈ I and j ∈ J} is an ideal of R, Exercise 2.7.29 shows that this is not true in general.

Our next proposition illuminates the relationship between the ideals IJ, I ∩ J, I, J, and I + J.

Proposition 2.2.15. Given any left ideals I and J of any rng R, we have the left ideal containments

I ∩ J ⊆ I ⊆ I + J and I ∩ J ⊆ J ⊆ I + J. If I and J are two-sided ideals, then IJ ⊆ I ∩ J.

Proof. We leave it as Exercise 2.7.28 to prove that I ∩ J and I + J are left ideals of R and that IJ

is a two-sided ideal of R if I is a left ideal and J is a right ideal of R. Given any element k ∈ I ∩ J,
we have that k ∈ I and k ∈ J so that I ∩ J ⊆ I and I ∩ J ⊆ J. Even more, for any elements i ∈ I

and j ∈ J, we have that i = i + 0R ∈ I + J and j = 0R + j ∈ I + J, from which it follows that

I ⊆ I + J and J ⊆ I + J. Last, if I is a right ideal and J is a left ideal of R, then for every element

i ∈ I and j ∈ J, we have that ij ∈ I ∩ J because I is a right ideal of R and J is a left ideal of R.

Consequently, for every integer n ≥ 1 and any elements i1, . . . , in ∈ I and j1, . . . , jn ∈ I, the closure

of I and J under addition yields that i1j1 + · · ·+ injn ∈ I ∩ J so that IJ ⊆ I ∩ J.

Products of finitely generated ideals of a commutative rng are especially simple to describe.

Proposition 2.2.16. For any elements x1, . . . , xm, y1, . . . , yn of a commutative rng R, we have that

(x1, . . . , xm)(y1, . . . , yn) = (xiyj | 1 ≤ i ≤ m and 1 ≤ j ≤ n).

Put another way, the product of any finitely generated ideals of a commutative rng is a finitely

generated ideal that can be generated by the products of the generators of the underlying ideals.

Proof. By Exercise 2.7.28, it follows that (x1, . . . , xm)(y1, . . . , yn) is a two-sided ideal of R. Each of

the products xiyj with 1 ≤ i ≤ m and 1 ≤ j ≤ n lies in this ideal, hence it follows by Proposition

2.2.6 that the ideal generated by xiyj for each pair of integers 1 ≤ i ≤ m and 1 ≤ j ≤ n lies in

(x1, . . . , xm)(y1, . . . , yn). Conversely, every element of the product ideal is of the form i1j1+ · · ·+ iℓjℓ
for some elements i1, . . . , iℓ ∈ (x1, . . . , xm) and j1, . . . , jℓ ∈ (y1, . . . , yn). Consequently, it suffices to

prove that every product ij of an element i ∈ (x1, . . . , xm) and an element j ∈ (y1, . . . , yn) is an

element of the ideal (xiyj | 1 ≤ i ≤ m and 1 ≤ j ≤ n). But this is not so difficult: observe that if

i = r1x1 + · · ·+ rmxm and j = s1y1 + · · ·+ snyn for some elements r1, . . . , rm, s1, . . . , sn ∈ R, then

ij = (r1x1 + · · ·+ rmxm)(s1y1 + · · ·+ snyn) =
m∑
i=1

n∑
j=1

risjxiyj
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is an element of the finitely generated ideal (xiyj | 1 ≤ i ≤ m and 1 ≤ j ≤ n) by distributivity.

By the One-Step Subgroup Test, every ideal I of a rng R is a normal subgroup of the abelian

group (R,+), hence we have that (R/I,+) is an abelian group with respect to the usual left coset

addition defined by (r+I)+(s+I) = (r+s)+I. Even more, if I is a two-sided ideal, we may define

multiplication of left cosets via (r + I)(s + I) = rs + I. We must check that this is well-defined.

Given that any pair of left coset representatives r + I = x + I and s + I = y + I, it follows that

r = r + 0R = x + i and s = s + 0R = y + j for some elements i, j ∈ I. Consequently, we have that

rs = (x+ i)(y+ j) = xy+xj+ iy+ ij. By hypothesis that I is a two-sided ideal of R, it follows that

xj, iy, and ij are elements of I so that xj+iy+ij lies in I and xj+iy+ij+I = 0R+I.We conclude

that (r + I)(s + I) = rs + I = xy + I = (x + I)(y + I), as desired. Ultimately, this demonstrates

that (R/I,+, ·) is a rng: it is called the quotient rng of R modulo I. One can readily verify that

if R is commutative, then R/I is commutative, and if R is a unital ring with multiplicative identity

1R, then R/I is a unital ring with multiplicative identity 1R + I (see Exercise 2.7.35).

Example 2.2.17. Given any positive integer n, we may form the quotient ring Z/nZ because nZ
is an ideal of the commutative unital ring Z; this quotient is the ring defined in Example 2.1.3.

Example 2.2.18. Consider the commutative unital ring R[x] of real polynomials in indeterminate

x. We may form the quotient ring R[x]/(x) of R[x] modulo the principal ideal (x) generated by the

monomial x. By definition, the elements of R[x]/(x) are of the form p(x)+ (x) for some polynomial

p(x) ∈ R[x]. Observe that if p(x) = anx
n + · · ·+ a1x+ a0 for some real numbers an, . . . , a1, a0, then

p(x) + (x) = (anx
n + · · ·+ a1x+ a0) + (x) = (anx

n−1 + · · ·+ a1)x+ a0 + (x) = a0 + (x)

because (x) absorbs any polynomial multiple of x. We conclude that R[x]/(x) = {a+ (x) | a ∈ R}.

Example 2.2.19. Consider the commutative unital ring F (R,R) of functions f : R → R under

pointwise multiplication (fg)(x) = f(x)g(x).We may view the collection of real functions that pass

through the origin as an ideal I = {f : R → R | f(0) = 0}. Observe that the constant function zero

lies in I, hence it is nonempty; the Three-Step Ideal Test yields that I is an ideal of F (R,R) because
it is true that (f − g)(0) = f(0) − g(0) = 0 and (fg)(0) = f(0)g(0) = 0 for all functions f, g ∈ I.

Consequently, we may form the quotient ring F (R,R)/I of F (R,R) modulo I whose elements are

by definition left cosets of the form f(x) + I. Every real function f : R → R that passes through

the origin is identified with the zero function modulo I, hence the nonzero elements of F (R,R)/I
are precisely those functions f : R → R that do not pass through the origin. Explicitly, every

polynomial function p(x) = anx
n+ · · ·+ a1x+ a0 is identified with its constant term modulo I, and

the functions sinx and x2 satisfy that sinx+ I = 0+ I = x2+ I. Even more bizarrely, we have that

e0 = 1 so that ex − 1 is identically zero modulo I and ex + I = 1+ I = cosx+ I, i.e., the images of

cosx and the exponential function ex are identified with the constant function 1 modulo I.

We conclude with an indispensable result indicating how to construct two-sided ideals of a rng.

We leave the proof of this proposition as Exercise 2.2.20 for the reader. We point out that this result

generalizes the fact that every normal subgroup of a group is the kernel of a group homomorphism.

Proposition 2.2.20. Every two-sided ideal of a rng R is the kernel of a rng homomorphism from

R. Consequently, the two-sided ideals of R are precisely the kernels of rng homomorphisms from R.
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2.3 Ring Isomorphism Theorems

We provide in this section analogs of the Group Isomorphism Theorems of Section 1.10 for rngs.

Theorem 2.3.1 (First Isomorphism Theorem for Rngs). Every rng homomorphism φ : R → S

induces a rng isomorphism ψ : R/ kerφ→ φ(R) defined by ψ(r + kerφ) = φ(r).

Proof. By Proposition 2.1.26, we have that φ(R) is a subrng of S. Considering that kerφ is a two-

sided ideal of R by Proposition 2.1.27, we may view R/ kerφ as a rng with multiplication defined

by (r + kerφ)(s+ kerφ) = rs+ kerφ. We claim that the function ψ : R/ kerφ → φ(R) defined by

ψ(r+ kerφ) = φ(r) is a well-defined rng isomorphism. We must show that if r+ kerφ = s+ kerφ,

then ψ(r+kerφ) = ψ(s+kerφ). By Propositions 1.7.4 and 2.1.26, we have r+kerφ = s+kerφ if

and only if (r − s) + kerφ = 0R + kerφ if and only if r − s ∈ kerφ if and only if φ(r − s) = 0S if

and only if φ(r) − φ(s) = 0S if and only if φ(r) = φ(s) if and only if ψ(r + kerφ) = ψ(s + kerφ).

We conclude that ψ is well-defined. By hypothesis that φ is a rng homomorphism, it follows that

ψ is a rng homomorphism, and ψ is clearly surjective, hence it suffices to show that ψ is injective.

Observe that r + kerφ is in kerψ if and only if φ(r) = ψ(r + kerφ) = 0S if and only if r is in kerφ

if and only if r + kerφ = 0R + kerφ so that kerψ is trivial and ψ is injective, as desired.

We leave the following as exercises; the proofs are analogous to those in Section 1.10.

Corollary 2.3.2 (Canonical Factorization Theorem for Rngs). Every homomorphism φ : R → S

of rngs induces a canonial factorization φ = ψ◦π via the canonical projection π : R → R/ kerφ and

the extant group isomorphism ψ : R/ kerφ→ φ(R) of the First Isomorphism Theorem for Rngs.

Theorem 2.3.3 (Second Isomorphism Theorem for Rngs). Given any rng R with any subrng S

and any two-sided ideal I, we have that (S + I)/I and S/(I ∩ S) are isomorphic as rngs.

Theorem 2.3.4 (Third Isomorphism Theorem for Rngs). Given any rng R with any two-sided

ideals I and J such that J ⊆ I, we have that (R/J)/(I/J) and R/I are isomorphic as rngs.

Theorem 2.3.5 (Fourth Isomorphism Theorem for Rngs). Given any rng R with any two-sided

ideal I, we may construct a one-to-one correspondence between the subrngs of R that contain I and

the subrngs of R/I according to the assignment of a subrng S of R with I ⊆ S to the subrng S/I

of R/I. Even more, this one-to-one correspondence satisfies the following properties.

1.) Given any subrngs S and T of R such that I ⊆ S and I ⊆ T, we have that S ⊆ T if and only

if S/I ⊆ T/I. Put another way, this bijective correspondence is inclusion-preserving.

2.) Given any subrng S of R such that I ⊆ S, we have that S is an ideal of R if and only if the

collection S/I of left cosets of (I,+) in (S,+) is an ideal of R/I.

Proof. We must first establish that the assignment of a subrng S of R with I ⊆ S to a subrng S/I

of R/I is a well-defined, injective, and surjective function. Considering that I is a two-sided ideal

of R that is contained in S, it is a two-sided ideal of S, hence the quotient rng S/I is well-defined;

it is a subrng of R/I because S is a subrng of R. Consider any pair of subrngs S and T of R such

that S/I = T/I. We must prove that S = T. Given any element s ∈ S, there exist elements t ∈ T
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and i ∈ I such that s = s+ 0R = t+ i, from which it follows that s lies in T and S ⊆ T because T

is a subrng of R that contains I. By the same argument applied to the elements of T, we conclude

that T ⊆ S, as desired. We will demonstrate next that every subrng Q of R/I is of the form S/I for

some subrng S of R such that I ⊆ S. Consider the collection S = {r ∈ R | r + I ∈ Q} of elements

of R whose images modulo I comprise the subrng Q of R/I. We claim that S is a subrng of R that

contains I and satisfies that Q = S/I. By assumption that Q is a subrng of R/I, it follows by the

Subrng Test that 0R + I ∈ Q so that 0R ∈ S. Likewise, for any elements r, s ∈ S, we have that

(r − s) + I = (r + (−s)) + I = (r + I) + (−s+ I) = (r + I)− (s+ I)

by Proposition 2.1.8. Considering that r + I and s+ I lie in the subrng Q of R/I, their difference

lies in Q, hence we find that r − s ∈ S. By the same rationale, the product rs lies in S because it

satisfies that rs+ I = (r + I)(s+ I) and the left cosets r + I and s+ I both lie in Q. We conclude

that S is a subrng of R; it contains I because for every element i ∈ I, we have that i+ I = 0R + I

by Proposition 1.7.4; and it is straightforward to verify that Q = {r + I | r + I ∈ Q} = S/I.

By the previous paragraph, the only assertion that remains to be seen is the second property.

One need not think too hard to prove that if S is an ideal of R, then S/I is an ideal of R/I: indeed,

this follows because (r+ I)(s+ I) = rs+ I lies in S/I for every element r+ I ∈ R/I by assumption

that S is an ideal of R. Conversely, if S/I is an ideal of R/I, then for every element r ∈ R and

every element s ∈ S, we have that rs+ I = (r + I)(s+ I) is an element of S/I so that rs ∈ S.

Example 2.3.6. Consider the commutative unital ring F (R,R) of functions f : R → R under point-

wise multiplication (fg)(x) = f(x)g(x). We may define a function φ : F (R,R) → R by declaring

that φ(f(x)) = f(0); explicitly, φ evaluates the function f(x) at 0. Observe that φ is a group homo-

morphism because φ(f(x) + g(x)) = φ((f + g)(x)) = (f + g)(0) = f(0) + g(0) = φ(f(x)) + φ(g(x))

and φ(f(x)g(x)) = φ((fg)(x)) = (fg)(0) = f(0)g(0), hence φ is a unital ring homomorphism; often,

it is referred to simply as the evaluation homomorphism at 0. Considering that for every real

number C, the constant function fC(x) = C satisfies that C = fC(0) = φ(fC(x)), it follows that φ

is surjective. Even more, we have that f(x) ∈ kerφ if and only if f(0) = φ(f(x)) = 0, hence the

kernel of φ consists of all functions f : R → R that pass through the origin, i.e., it is the ideal from

Example 2.2.19. By the First Isomorphism Theorem for Rngs, we have that R/ kerφ ∼= R.
Example 2.3.7. Consider the commutative unital ring R[x] of real polynomials in indeterminate

x as a unital subring of F (R,R). By Example 2.3.6, the rule φ0(p(x)) = p(0) induces a unital ring

homomorphism φ0 : R[x] → R whose kernel consists of all polynomials that pass through the origin.

Observe that p(x) = anx
n + · · · + a1x + a0 passes through the origin if and only if 0 = p(0) = a0

if and only if p(x) = (anx
n−1 + · · · + a1)x, hence the kernel consists of all polynomials of the form

p(x) = q(x)x for some polynomial q(x). Put another way, we have that kerφ0 = (x). Once again,

the First Isomorphism Theorem for Rngs guarantees that R[x]/(x) ∼= R (cf. Example 2.2.18).

Example 2.3.8. Consider the commutative unital rings Z/nZ and Z/mnZ of integers modulo some

positive integer n and mn, respectively. Observe that nZ/mnZ is a two-sided ideal Z/mnZ: indeed,
we have already seen that nZ/mnZ is an additive abelian group, and moreover, for any integer a

and any left coset representative nk +mnZ of nZ in mnZ, we have that (a+mnZ)(nk +mnZ) or
n(ak) +mnZ lies in nZ/mnZ. By the Third Isomorphism Theorem for Rngs, we conclude that

Z/mnZ
nZ/mnZ

∼=
Z
nZ

.
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2.4 Integral Domains and Fields

We have so far this chapter defined a rng (R,+, · · · ) as an abelian group (R,+) with an associative

and distributive multiplication. We have reserved the terminology of unital ring for any rng R that

admits a unique multiplicative identity element 1R satisfying that r1R = r = 1Rr for every element

r of R. We say that a rng R is commutative if rs = sr for all elements r, s ∈ R. Generally, the order

of multiplication matters, e.g., in the non-commutative unital ring Rn×n of real n× n matrices.

We say that an element r of a rng R is left regular if rs = 0R implies that s = 0R. We will soon

alternatively refer to these elements as left cancellable (cf. Proposition 2.4.10). Conversely, a left

zero divisor is any element r ∈ R for which rs = 0R for some nonzero element s ∈ R.

Example 2.4.1. Consider the commutative unital ring Z/nZ for any positive integer n. Observe

that if k is any positive divisor of n other than 1, then k+ nZ is a zero divisor of nZ. Explicitly, in
this case, there exists an integer q ≥ 1 such that n = kq, hence the left cosets k + nZ and q + nZ
are nonzero and satisfy that (k + nZ)(q + nZ) = kq + nZ = n+ nZ = 0+ nZ by Proposition 1.7.4.

Concretely, if the assume that n = 30, the zero divisors of Z/30Z are 2 + 30Z, 3 + 30Z, 5 + 30Z,
6 + 30Z, 10 + 30Z, and 15 + 30Z because the non-trivial divisors of 30 are 2, 3, 5, 6, 10, and 15.

Conversely, the regular elements of Z/nZ are the left cosets a + nZ of nZ in Z satisfying that

ab + nZ = (a + nZ)(b + nZ) = 0 + nZ implies that b + nZ = 0 + nZ. Put another way, the left

coset a + nZ is a regular element of Z/nZ if and only if n | ab implies that n | b if and only if

gcd(n, a) = 1 by Euclid’s Lemma if and only if a + nZ is a unit by Example 2.1.12. Explicitly, if

gcd(a, n) = d > 1, then by Exercise 0.6.34, it follows that a+ nZ is a zero divisor in Z/nZ.

Example 2.4.2. Consider the following real 2× 2 matrices.

A =

(
0 1

0 0

)
B =

(
1 1

0 0

)
C =

(
1 0

−1 0

)
D =

(
0 0

1 1

)
Observe that AB is the zero matrix, hence in the unital ring R2×2, it follows that A is a left zero

divisor and B is a right zero divisor Conversely, we have that A2 is the zero matrix, hence A is a

right zero divisor. Likewise, we have that BC is the zero matrix, hence B is a left zero divisor and

C is a right zero divisor. Last, we find that CD is the zero matrix so that C is a left zero divisor

and D is a right zero divisor. One of the fundamental properties of square matrices is that any left

matrix inverse is a right matrix inverse (hence any left zero divisor must be a right zero divisor).

Example 2.4.3. External direct products of nonzero rngs always admit non-trivial left zero divisors.

Explicitly, if R and S are any nonzero rngs, then for any nonzero elements r ∈ R and s ∈ S, we have

that (r, 0S) and (0R, s) are nonzero elements of R× S such that (r, 0S)(0R, s) = (0R, 0S) = 0R×S.

Example 2.4.4. Observe that if n is any nonzero integer, then mn = 0 if and only if m = 0 because

we can divide both sides of the equation mn = 0 by n. Consequently, there are no non-trivial zero

divisors of Z. Put another way, every nonzero element of Z is regular. By the same argument, the

nonzero elements of the commutative unital rings Q, R, and C are all regular (and in fact invertible).

Definition 2.4.5 (Zero Product Property). Given any rng R, we say that a nonzero element r ∈ R

satisfies the Zero Product Property if it holds that rs is nonzero if and only if s is nonzero.
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Consequently, every regular element of any rng satisfies the Zero Product Property. We refer to

any unital ring R in which every nonzero element satisfies the Zero Product Property as a domain.

Commutative domains are called integral domains. Recall that an element u of a unital ring R is

a unit if there exists a unique element u−1 ∈ R such that uu−1 = 1R = u−1u. Unital rings in which

every nonzero element is a unit are called skew fields. Commutative skew fields are simply fields.

Example 2.4.6. Observe that the integers Z form an integral domain that is not a field: for any

integer n ≥ 2, the multiplicative inverse of n is a non-integral rational number. Put another way,

by Example 2.1.11, we have that U(Z) = {1,−1}, but there are infinitely many nonzero integers.

Example 2.4.7. Consider the commutative unital ring Z/pZ for any prime number p. By Example

2.1.12, every nonzero element of Z/pZ is a unit. Consequently, the only non-unit in Z/pZ is the

zero coset 0 + pZ, hence Z/pZ is a field with p elements, i.e., it is a finite field.

Example 2.4.8. Observe that the rational numbers Q form a field because every nonzero element

of Q can be written as r
s
for some nonzero integers r and s with gcd(r, s) = 1 so that r

s
· s
r
= 1.

Our aim throughout the rest of this section and the next is to understand to what extent an

(integral) domain fails to be a (skew) field. Before this, we record several immediate propositions

regarding the especially nice properties of (integral) domains and (skew) fields.

Proposition 2.4.9. Every skew field is a domain. Consequently, every field is an integral domain.

Proof. We must prove that every nonzero element of a skew field k obeys the Zero Product Property.

Concretely, if u is a nonzero element of k and uv = 0k, we claim that v = 0k. Every nonzero element

u ∈ k admits a unique multiplicative inverse u−1 such that u−1u = 1k, hence for any element v ∈ k

such that uv = 0k, it follows that 0k = u−10k = u−1(uv) = 1kv = v by Proposition 2.1.8.

Proposition 2.4.10. Cancellation of nonzero factors in products is a valid operation in a domain.

Proof. Given any domain R, consider any elements r, s, and t such that rs = rt and r is nonzero.

We claim that s = t. We have that rs− rt = 0R so that r(s− t) = 0R. By assumption that R is a

domain and r is nonzero, the Zero Product Property implies that s− t = 0R so that s = t.

Proposition 2.4.11. Every nonzero unital subring of a skew field is a domain.

Proof. Consider a nonzero element r of a nonzero unital subring R of a skew field k. Observe that

if rs = 0k for some element s ∈ R, then we must have that s = 0k by Proposition 2.4.9. Explicitly,

if we view the equation rs = 0k as an equation in the elements of k, then we may multiply on the

left-hand side by the unique multiplicative inverse r−1 of R to obtain the desired result.

Corollary 2.4.12. Every nonzero unital subring of a field is an integral domain.

Example 2.4.13. Consider the nonempty subset Z[i] = {a+ bi | a, b ∈ Z} of the complex numbers

C. By the Subrng Test, it is straightforward to verify that Z[i] is a commutative unital subring of C
called the Gaussian integers: complex subtraction obeys (a+bi)−(c+di) = (a−c)+(b−d)i, and
complex multiplication satisfies that (a+ bi)(c+ di) = (ac− bd) + (ad+ bc)i. Both of the complex

numbers (a− c)+ (b− d)i and (ac− bd)+ (ad+ bc)i have integral components so long as a, b, c, and

d are integers. Corollary 2.4.12 ensures that the Gaussian integers form an integral domain.
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Proposition 2.4.14. Every integral domain has characteristic either zero or a prime number.

Proof. We will assume that the characteristic of R is nonzero. Consequently, there exists a smallest

positive integer n ≥ 2 such that n · 1R = 0R. On the contrary, if n were not prime, then there is

a well-defined smallest prime number p that divides n. Considering that 1 ≤ p < n, we must have

that p · 1R is nonzero, hence p · 1R is not a zero divisor since R is an integral domain. We conclude

that pk · 1R is not a zero divisor for the largest integer k such that pk divides n. Considering that

0R = n · 1R = (pk · 1R)
(
n

pk
· 1R
)

and cancelling pk · 1R from both sides of this equation yields
n

pk
· 1R = 0R — a contradiction.

Example 2.4.15. By Example 2.1.21, the characteristic of Z/pZ is p whenever p is prime.

Considering our examples so far, we have the following hierarchy of commutative unital rings.

finite fields ⊊ (skew) fields ⊊ (integral) domains ⊊ (commutative) unital rings

One can furthermore specialize this hierarchy to discuss different types of integral domains; however,

we will simply continue to explore the relationship between (integral) domains and (skew) fields.

Proposition 2.4.16. Every nonzero finite integral domain is a field.

Proof. We must demonstrate that for any nonzero element x of an integral domain R, there exists a

nonzero element y ∈ R such that xy = 1R. Consider the function φx : R → R defined by φx(r) = rx.

By hypothesis that R is a domain and x is a nonzero element of R, it follows that x is cancellable

and φ is injective: indeed, we have that φx(r) = φx(s) if and only if rx = sx if and only if r = s

by Proposition 2.4.10. Considering that R is finite, we conclude that φ is surjective by Proposition

0.1.86, hence there exists a nonzero element y ∈ R such that 1R = xy = φx(y), as desired.

Consequently, to study (integral) domains that are not (skew) fields, we need only consider the

infinite domains. Our next proposition yields a crucial condition on the two-sided ideals of a field.

Theorem 2.4.17 (Fundamental Theorem of Field Homomorphisms). Every unital ring homomor-

phism φ : k → R from a skew field k to a unital ring R is either is injective or the zero function.

Proof. We note that φ is not injective if and only if there exists a nonzero element x ∈ kerφ. But if

k is a skew field, there exists a unique element x−1 ∈ k such that x−1x = 1k. Considering that kerφ

is a two-sided ideal by Proposition 2.1.27, it follows that 1k = x−1x is an element of kerφ. But this

implies that for every element y ∈ k, we have that φ(y) = φ(1ky) = φ(1k)φ(y) = 0Rφ(y) = 0R.

Corollary 2.4.18. Every surjective unital ring homomorphism φ : k → R from any skew field k to

any nonzero unital ring R is a unital ring isomorphism.

Proof. Considering that φ is a surjective unital ring homomorphism, it follows that φ(k) is nonzero.

By the Fundamental Theorem of Field Homomorphisms, we conclude that φ is injective.

Corollary 2.4.19. Every two-sided ideal of a skew field k is either {0k} or k.

Proof. By Proposition 2.2.20, every two-sided ideal of k is the kernel of some unital ring homomor-

phism from k. By the Fundamental Theorem of Field Homomorphisms, the kernel of a unital ring

homomorphism from k is either the zero ideal (if the unital ring homomorphism is injective) or the

entire skew field k itself (if the unital ring homomorphism is the zero function).
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2.5 Prime and Maximal Ideals

We have seen thus far in this chapter that the underlying structure of a rng as an additive abelian

group affords a rng with many of the familiar features of an abelian group. Concretely, a rng ho-

momorphism is a group homomorphism that preserves multiplication; two-sided ideals of rngs are

analogous to normal subgroups; quotient rngs are analogous to quotient groups; and there four iso-

morphism theorems for rngs that extend the four isomorphism theorems for groups. Our immediate

aim throughout this section is to impress upon the reader that the multiplicative structure of a rng

is the principal mechanism that distinguishes these two algebraic objects and moreover that the

multiplicative structure of a rng enjoys a rich theory; it is to this end (at last) that we restrict our

attention to commutative unital rings. We will therefore no longer make any distinction between

ideals and two-sided ideals: they are the same notion. Even more, the work that we have done so

far is valid in this setting because it holds in the much broader context of arbitrary rngs.

We begin by saying that a proper ideal P of a commutative unital ring R is prime if it has the

property that for all elements r, s ∈ R such that rs ∈ P, we must have that either r ∈ P or s ∈ P.

Example 2.5.1. Consider the principal ideal 5Z = {5k : k ∈ Z} of the commutative unital ring

Z. Given any integers m and n such that mn ∈ 5Z, by definition, we must have that mn = 5k for

some integer k, from which it follows that 5 | mn. Considering that 5 is a prime number, we must

have that 5 | m or 5 | n so that m ∈ 5Z or n ∈ 5Z by Euclid’s Lemma. Put another way, 5Z is a

prime ideal of Z. Ultimately, this example serves to show that prime ideals are a generalization of

prime numbers. We conclude by noting that Z/5Z is an integral domain by Example 2.4.7.

Example 2.5.2. Consider the principal ideal (x) = {r(x)x : r(x) ∈ R[x]} of the commutative unital

ring R[x] of real polynomials in indeterminate x. Given any real polynomials p(x) and q(x) such

that p(x)q(x) ∈ (x), we must have that p(x)q(x) = r(x)x for some real polynomial r(x). Observe

that if neither p(x) nor q(x) were divisible by x, then their product would not be divisible by x:

indeed, we have that p(x) is not divisible by x if and only if the constant term of p(x) is nonzero.

Consequently, if neither p(x) nor q(x) has constant term zero, then the constant term of p(x)q(x)

cannot possibly be zero because the real numbers form a field. On the other hand, the constant

term of the polynomial r(x)x is zero, so it follows that either the constant term of p(x) is zero or

the constant term of q(x) is zero, i.e., we must have that p(x) ∈ (x) or q(x) ∈ (x).We conclude that

(x) is a prime ideal of R[x]. By Example 2.3.7, we have that R[x]/(x) ∼= R is an integral domain.

Our next proposition illustrates that the conclusions of the previous examples hold in general.

Proposition 2.5.3 (Quotient Criterion for a Prime Ideal). Given any commutative unital ring R

and any proper ideal P of R, we have that P is prime if and only if R/P is an integral domain.

Proof. We will assume first that P is a prime ideal of R. We claim that R/P is an integral domain.

Considering that R is a commutative unital ring, it follows that R/P is a commutative unital ring,

hence it suffices to demonstrate that for any pair of left cosets r+P and s+P of P in R such that

(r + P )(s+ P ) = 0R + P, we have that r + P = 0R + P or s+ P = 0R + P. Coset multiplication is

defined such that 0R + P = (r + P )(s + P ) = rs + P, hence we have that rs ∈ P by Proposition

1.7.4. By assumption that P is a prime ideal, either r ∈ P or s ∈ P so that either r+P = 0R+P or

s+ P = 0R + P. Conversely, suppose that R/P is an integral domain. Given any elements r, s ∈ R
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such that rs ∈ P, we have that (r + P )(s + P ) = rs + P = 0R + P. By hypothesis that R/P is an

integral domain, it follows that r + P = 0R + P or s+ P = 0R + P so that r ∈ P or s ∈ P.

Example 2.5.4 (Existence of Non-Prime Ideals). Consider the principal ideal 4Z of the commuta-

tive unital ring Z. Observe that (2+ 4Z)(2 + 4Z) = 4+ 4Z = 0+ 4Z, hence Z/4Z is not an integral

domain. By the Quotient Criterion for a Prime Ideal, it follows that 4Z is not a prime ideal.

We say that a proper ideal M of a commutative unital ring R is maximal if it has the property

that M ⊆ I for some ideal I of R implies that I =M or I = R. Put another way, a maximal ideal

M is maximal (with respect to inclusion) among the proper ideals of R that contains M. Crucially,

this definition implies that if M is a maximal ideal of a commutative unital ring R, then the only

ideal of R that properly contains M is the entire ring R. Explicitly, if M ⊊ I, then I = R.

Example 2.5.5. Consider the principal ideal 5Z = {5k : k ∈ Z} of the commutative unital ring Z
of integers. Crucially, by Exercise 2.7.45, every ideal of Z is of the form nZ for some positive integer

n. Observe that 5Z ⊆ nZ for some positive integer n if and only if 5 = 5(1) ∈ nZ if and only if

5 = nq for some nonzero integer q if and only if n = 1 or n = 5. Consequently, the only ideals of Z
containing 5Z are the entire ring Z and the ideal 5Z itself, hence 5Z is a maximal ideal of Z. By the

Fourth Isomorphism Theorem for Rngs, the ideals of Z/5Z are in one-to-one correspondence with

the ideals of Z containing 5Z. Consequently, the only ideals of Z/5Z are Z/5Z (with pre-image Z)
and the zero ideal (with pre-image 5Z); this agrees with Example 2.4.7 and Corollary 2.4.19.

Example 2.5.6. Consider the principal ideal (x) of the commutative unital ring R[x] of real poly-
nomials in indeterminate x.We claim that if I is any ideal of R[x] such that (x) ⊊ I, then I = R[x].
By Proposition 2.2.6, if I is any ideal of R[x] such that (x) ⊆ I, then x ∈ I. Given any polynomial

p(x) ∈ I \ (x), we have that p(x) = [p(x)− p(0)] + p(0). Crucially, we note that q(x) = p(x)− p(0)

is a polynomial that is divisible by x, hence we may realize p(0) = p(x) −
[
1
x
q(x)

]
x. Considering

that x ∈ I and p(x) ∈ I, it follows that p(0) ∈ I by assumption that I is an ideal of R[x]. But in
view of the fact that p(x) is not divisible by x, it follows that p(0) is a nonzero real number so that

1 = p(0)p(0)−1 lies in I. Consequently, the only ideals of R[x] that contain (x) are the entire ring

R[x] and the ideal (x) itself, hence (x) is maximal. By Example 2.3.7, R[x]/(x) ∼= R is a field.

Proposition 2.5.7 (Quotient Criterion for a Maximal Ideal). Given any commutative unital ring

R and any proper ideal M of R, we have that M is maximal if and only if R/M is a field.

Proof. We will assume first that M is a maximal ideal of R. We claim that R/M is a field. Con-

sidering that R is a commutative unital ring, it follows that R/M is a commutative unital ring,

hence it suffices to demonstrate that for any nonzero left coset x +M of M in R, there exists a

nonzero left coset r +M of M in R such that (r +M)(x +M) = 1R +M. Coset multiplication is

defined such that (r +M)(x +M) = rx +M, hence we have that (r +M)(x +M) = 1R +M if

and only if rx +M = 1R +M if and only if rx = rx + 0R = 1R −m for some element m ∈ M if

and only if 1R = m + rx for some elements m ∈ M and r ∈ R \M. By Exercise 2.7.32, the set

M + Rx = {m + rx | m ∈ M and r ∈ R} is an ideal of R that properly contains M, hence by

the maximality of M, it follows that R =M +Rx. Consequently, there exist elements m ∈M and

r ∈ R such that 1R = m+ rx. Crucially, we must have that r ∈ R \M because M is a proper ideal

of R: for if it were true that r ∈M, then 1R = m+ rx would be an element of M.
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Conversely, we will assume that R/M is a field. By the Fourth Isomorphism Theorem for Rngs,

every ideal of R/M is of the form I/M for some ideal I of R such that M ⊆ I. By Corollary 2.4.19,

the only ideals of R/M are the zero ideal and R/M itself, hence we have that I/M = {0R +M} or

I/M = R/M. But this implies that I =M or I = R, hence M is maximal, as desired.

Corollary 2.5.8. Every maximal ideal of a commutative unital ring is a prime ideal. Conversely,

there exists a commutative unital ring that admits a prime ideal that is not maximal.

Proof. By Proposition 2.4.9, every field is an integral domain. Consequently, if M is a maximal

ideal of a commutative unital ring R, then R/M is a field by the Quotient Criterion for a Maximal

Ideal so that R/M is an integral domain. We conclude by the Quotient Criterion for a Prime Ideal

that M is a prime ideal of R. We reserve the proof of the converse for future discussion.

By the exposition preceding Proposition 2.2.15, every pair of ideals I and J of a commutative

unital ring R induce a product ideal IJ = {i1j1 + · · · + injn | n ≥ 1, i1, . . . , in ∈ I, j1, . . . , jn ∈ J}.
Prime numbers have the property that if p is a prime number and a and b are integers such that

p | ab, then it must be the case that p | a or p | b. Our next proposition reasserts that prime ideals

behave analogously to prime numbers with respect to an abstraction of this divisibility property.

Proposition 2.5.9 (Product Property of a Prime Ideal). Given any commutative unital ring R,

any prime ideal P of R, and any ideals I and J of R with IJ ⊆ P, we have that I ⊆ P or J ⊆ P.

Proof. By Exercise 0.6.17, we may assume that J ̸⊆ P and use this to establish that I ⊆ P. Given

any element i ∈ I, for every element j ∈ J, we have that ij ∈ P by hypothesis that IJ ⊆ P.

Considering that J ̸⊆ P, there exists an element j0 ∈ J such that j0 /∈ P. By the primality of P and

the fact that ij0 ∈ P, we must have that i ∈ P. We conclude therefore that I ⊆ P, as desired.

Until now, we have tacitly assumed that every commutative unital ring admits prime and max-

imal ideals. By Proposition 2.5.8, in order to prove that this is indeed the case, it suffices to prove

that every commutative unital ring admits a maximal ideal. We achieve this using Zorn’s Lemma.

Explicitly, if R is a nonzero commutative unital ring, then the zero ideal {0R} is a proper ideal of

R. By Exercise 0.6.9, set inclusion constitutes a partial order on the nonempty set of proper ideals

of R, hence if we can demonstrate that every ascending chain of proper ideals in R has an upper

bound that is a proper ideal of R, then we will conclude that R admits a maximal ideal.

Proposition 2.5.10. Given any ascending chain I1 ⊆ I2 ⊆ I3 ⊆ · · · of proper ideals of a commu-

tative unital ring R, we have that ∪∞
n=1In is a proper ideal of R.

Proof. Considering that 0R lies in I1, it follows that 0R lies in ∪∞
n=1In so that this set is nonempty.

By the Three-Step Ideal Test, it suffices to prove that the set ∪∞
n=1In is closed under subtraction

and multiplication by elements of R. Given any elements r, s ∈ ∪∞
n=1In, there exist indices m ≥ ℓ

such that r ∈ Iℓ and s ∈ Im. By assumption that Iℓ ⊆ Im, it follows that r, s ∈ Im so that r−s ∈ Im
because Im is an ideal of R. We conclude that r − s ∈ ∪∞

n=1In. Even more, for any element x ∈ R,

we have that xr ∈ Iℓ so that xr ∈ ∪∞
n=1In, hence it is an ideal of R. On the contrary, suppose that

∪∞
n=1In is not a proper ideal of R. Consequently, there exists an integer m ≥ 1 such that 1R ∈ Im so

that Im is not a proper ideal of R— contradicting the assumptions of the proposition statement.
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Leveraging the previous proposition, we carry out the strategy outlined in the previous paragraph

to illustrate that every commutative unital ring possesses at least one maximal ideal, and moreover,

that maximal ideals are actually ubiquitous in commutative unital rings; the ideas contained in the

following proofs are quite common in commutative algebra, so we urge to read them carefully.

Theorem 2.5.11. Every nonzero commutative unital ring possesses a maximal ideal.

Proof. Consider the collection P of proper ideals of a commutative unital ring R. Observe that P is

partially ordered by subset containment, and it is nonempty because it contains the zero ideal {0R}.
Consequently, we seek to employ Zorn’s Lemma. Consider any ascending chain I1 ⊆ I2 ⊆ I3 ⊆ · · ·
of ideals in P . By Proposition 2.5.10, it follows that ∪∞

n=1In is a proper ideal of R; this demonstrates

that every chain of elements of P has an upper bound in P , hence P admits a maximal element with

respect to subset containment. By definition, this maximal element is a maximal ideal of R.

Theorem 2.5.12. Every proper ideal of a nonzero commutative unital ring lies in a maximal ideal.

Proof. Given any proper ideal I of a commutative unital ring R, consider the nonempty collection

P of proper ideals of R that contain I. Every ascending chain I1 ⊆ I2 ⊆ I3 ⊆ · · · of ideals of

P induces an upper bound ∪∞
n=1In that is a proper ideal of R that contains I by the proof of

Proposition 2.5.10. Consequently, by Zorn’s Lemma, the set P admits a maximal element M with

respect to set inclusion. We claim thatM is a maximal ideal of R. By construction,M is the largest

(with respect to set inclusion) proper ideal of R that contains I. Consequently, for any ideal J of R

that contains M, we have that J contains I, hence it must be the case that J =M or J = R.

We conclude this chapter with a result that is simple to prove but admits astonishing significance.

Corollary 2.5.13. Given any ascending chain I1 ⊆ I2 ⊆ I3 ⊆ · · · of proper ideals of a commutative

unital principal ideal ring R, there exists an integer n ≥ 1 such that Ik = In for all integers k ≥ n.

Proof. By virtue of Proposition 2.5.10, we have that ∪∞
n=1In is a proper ideal of R. Consequently,

there exists an element x ∈ ∪∞
n=1In such that ∪∞

n=1In = xR by assumption that R is a principal ideal

ring. We claim that In = xR for the smallest integer n ≥ 1 such that x ∈ In, hence we have that

Ik = In for all integers k ≥ n. Explicitly, by Proposition 2.2.6, we have that xR ⊆ In ⊆ ∪∞
n=1In = xR.

Even more, for each integer k ≥ n, we have that xR = In ⊆ Ik ⊆ ∪∞
n=1In = xR so that Ik = In.

2.6 Chapter 2 Overview

Check back at a later date, as this section is currently under construction.

2.7 Chapter 2 Exercises

Exercise 2.7.1. Prove that if R is a unital ring such that 0R = 1R, then R is the zero ring.

Exercise 2.7.2. Prove that if R is a unital ring such that 0R is a unit, then R is the zero ring.

Exercise 2.7.3. Prove that the Rng Exponent Laws hold for any rng R.
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Exercise 2.7.4. We say that a rng R is Boolean if it holds that r2 = r for all elements r ∈ R.

(a.) Prove that if R is a Boolean rng, then r = −r holds for every element r.

(b.) Prove that if R is a Boolean rng, then R is commutative.

(Hint: Observe that if R is Boolean, then (r + s)2 = r + s for all elements r, s ∈ R.)

(c.) Prove that if R is a Boolean rng, then char(R) = 2.

Exercise 2.7.5. Consider a rng R such that r3 = r for all elements r ∈ R.

(a.) Prove that (r + s)3 = r3 + rsr + sr2 + s2r + r2s + rs2 + srs + s3 for all elements r, s ∈ R.

Conclude that rsr + sr2 + s2r + r2s+ rs2 + srs = 0R for all elements r, s ∈ R.

(b.) Conclude from the previous step that (r + r)3 = 8r3 for all elements r ∈ R.

(c.) Conclude from the previous step that 6r = 0R for all elements r ∈ R.

(d.) Prove that (r − s)3 = r3 − rsr − sr2 + s2r − r2s + rs2 + srs − s3 for all elements r, s ∈ R.

Conclude that −rsr − sr2 + s2r − r2s+ rs2 + srs = 2s for all elements r, s ∈ R.

(e.) Conclude from the previous steps that 2(s2r + rs2 + srs) = 2s for all elements r, s ∈ R.

(f.) Conclude from the previous steps that 2r = 0R for all elements r ∈ R.

(g.) Conclude from the previous step and Exercise 2.7.4 that R is commutative.

Conclude that commutativity of a rng is a stronger condition than commutativity of a group.

Exercise 2.7.6. Consider a unital ring R with multiplicative identity 1R. Prove that for any element

r ∈ R such that there exists an element s ∈ R for which rs = 1R = sr, the element s is unique to r.

Exercise 2.7.7. Give an example of a unital ring (R,+, ·) and elements r, s ∈ R such that rs = 1R
and sr ̸= 1R. Conclude that in a non-commutative ring, left- and right-inverses are not the same.

Exercise 2.7.8. Consider the set U(R) of units of a unital ring R defined below.

U(R) = {u ∈ R | uv = 1R = vu for some element v ∈ R}

(a.) Prove that if u is a unit of R, then u−1 is a unit of R.

(b.) Prove that if u and v are units of R, then uv is a unit of R.

(c.) Prove that U(R) forms a group with respect to multiplication; it is called the multiplicative

group of units of R. Conclude that if R is commutative, then U(R) is abelian.

(d.) Prove that if u is a unit of R, then −u is a unit of R.

(e.) Prove that U(R) is not closed under addition. Conclude that U(R) is not a rng.

Exercise 2.7.9. Consider a unital ring R with multiplicative identity 1R. Prove that for any ele-

ments u, v ∈ R such that uv is a unit of R, we must have that u and v are units of R.
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Exercise 2.7.10. Given any unital rings R and S, prove that U(R× S) = U(R)× U(S).

Exercise 2.7.11. Prove or disprove that the given function is a unital ring homomorphism.

(a.) φ : Z → Z defined by φ(x) = −x

(b.) φ : Q → Q defined by φ(x) =
2x

x+ 1

(c.) φ : R → C defined by φ(x) =
√
x

(d.) φ : R → R2×2 defined by φ(x) =

(
x 0

0 x

)
Exercise 2.7.12. Prove or disprove that the given pair of commutative rngs are isomorphic.

(a.) nZ and Z for any integer n ≥ 2

(b.) Z and Q

(c.) Q and R

(d.) R and C

(e.)
Z
6Z

and
Z
2Z

× Z
3Z

(f.)
Z
16Z

and
Z
4Z

× Z
4Z

Exercise 2.7.13. Prove that the following properties of a rng homomorphism φ : R → S hold.

(a.) We have that φ(0R) = 0S.

(b.) We have that φ(r − s) = φ(r)− φ(s) for all elements r, s ∈ R.

(c.) Given any subrng T ⊆ R, we have that φ(T ) is a subrng of S.

(d.) Given that φ is surjective and R is a unital ring, we have that S is a unital ring. Explicitly,

if the multiplicative identity of R is 1R, then the multiplicative identity of S is φ(1R).

(e.) Given that φ is surjective and R is a unital ring, then for any unit u ∈ R with multiplicative

inverse u−1, we have that φ(u) is a unit of S with multiplicative inverse φ(u)−1 = φ(u−1).

Exercise 2.7.14. Consider any rng homomorphism φ : R → S. Prove that kerφ is a subrng of R

that is closed under multiplication by elements of R. Conclude that φ is a two-sided ideal of R.

Exercise 2.7.15. Consider any unital ring R with multiplicative identity 1R.

(a.) Prove that for any unit u of R, the function χu : R → R defined by χu(r) = uru−1 is a unital

ring automorphism. By analogy to group theory, we refer to χu as an inner automorphism

of R. We denote by Inn(R) = {χu : R → R | u ∈ U(R)} the set of inner automorphisms of R.

(b.) Prove that Inn(R) forms a non-abelian group under composition.

(c.) Prove that Inn(R) is not an additive group. Conclude that Inn(R) is not a rng.

(d.) Prove that the function ψ : U(R) → Inn(R) defined by ψ(u) = χu is a group homomorphism.

(e.) Compute the kernel of the group homomorphism ψ : U(R) → Inn(R).
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Exercise 2.7.16. Prove that mZ and nZ are not isomorphic as rngs for any integers m > n ≥ 2.

Exercise 2.7.17. Consider the collection End(R) = {φ : R → R | φ is a rng homomorphism} of

rng endomorphisms of R. Prove that (End(R),+, ◦) is a non-commutative unital ring.

Exercise 2.7.18. Compute the characteristic of each of the following commutative unital rings.

(a.) R2×2

(d.)
Z
2Z

× Z
2Z

(b.) C× C

(e.)
Z
2Z

× Z
3Z

(c.) F (R,R)

(f.)
Z
4Z

× Z
6Z

Exercise 2.7.19. Conjecture a formula for the characteristic of external direct product (Z/mZ)×
(Z/nZ) for any pair of positive integers m and n; then, prove that your formula holds.

Exercise 2.7.20. Prove that if R is a finite unital ring, then the characteristic of R is positive.

Exercise 2.7.21. Prove that Q(
√
2) = {a+ b

√
2 | a, b ∈ Q} is a commutative unital subring of R.

Exercise 2.7.22. Consider any rng R with any pair of subrngs S and T.

(a.) Prove that S ∩ T is a subrng of R.

(b.) Provide an example of a non-commutative rng R and a subrng S of R such that S is commu-

tative. Conclude that non-commutativity is not inherited under intersection of rngs.

(c.) Provide an example of a unital ring R and a subrng S of R such that S does not possess a

multiplicative identity. Conclude that unity is not inherited under intersection of rngs.

(d.) Prove that S ∪ T is a subrng of R if and only if R = S or R = T.

(Hint: Consider an element x ∈ S \T and an element t ∈ T \S. On the contrary, if S∪T were

a subrng, then it would be closed under subtraction. Conclude that either t ∈ S or s ∈ T.)

Exercise 2.7.23. Consider any rng R. Prove that Z(R) = {x ∈ R | rx = xr for all elements r ∈ R}
is a subrng of R called the center of R. Conclude that if R is unital, then Z(R) is unital.

Exercise 2.7.24. Prove that the following is a subrng of the non-commutative unital ring R2×2.

S =

{(
a b

0 0

) ∣∣∣∣ a, b ∈ R
}

Prove that there exists a nonzero element A ∈ S such that AB = B = BA for all elements B ∈ S.

Why does this does not violate the conclusion of the Subrng Test regarding unital rings?

Exercise 2.7.25. Consider the commutative unital ring R[x] of real univariate polynomials.

(a.) Prove that C = {p(x) ∈ R[x] : p(x) is constant} is a commutative unital subring of R[x].

(b.) Prove that R[x] \ C = {p(x) ∈ R[x] : p(x) is not constant} is not an ideal of R[x].

(c.) Prove that I = {p(x) ∈ R[x] : p(0) = 2α for some real number α} is an ideal of R[x].

(d.) Prove that J = {p(x) ∈ R[x] : p(0) = 2} is not an ideal of R[x].
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Exercise 2.7.26. Prove that if φ : R → S is any rng homomorphism and J is any (two-sided) ideal

of S, then φ−1(J) = {r ∈ R | φ(r) ∈ J} is a (two-sided) ideal of R that contains kerφ.

Exercise 2.7.27. Given for any elements x1, . . . , xn of a rng R, consider the following.

R(x1, . . . , xn) = {r1x1 + · · ·+ rnxn | r1, . . . , rn ∈ R}
(x1, . . . , xn)R = {x1r1 + · · ·+ xnrn | r1, . . . , rn ∈ R}

(a.) Prove that R(x1, . . . , xn) is a finitely generated left ideal of R.

(b.) Prove that (x1, . . . , xn)R is a finitely generated right ideal of R.

(c.) Prove that a left ideal I of R contains R(x1, . . . , xn) if and only if x1, . . . , xn ∈ I.

(d.) Prove that a right ideal I of R contains (x1, . . . , xn)R if and only if x1, . . . , xn ∈ I.

Exercise 2.7.28. Consider any rng R with left ideals I and J.

(a.) Prove that I + J = {i+ j | i ∈ I and j ∈ J} is a left ideal of R.

(b.) Prove that I ∩ J = {x ∈ R | x ∈ I and x ∈ J} is a left ideal of R.

(c.) Prove that I ∪ J = {x ∈ R | x ∈ I or x ∈ J} is not an ideal if I \ J and J \ I are nonempty.

(Hint: Consider an element i ∈ I \J and an element j ∈ J \ I. On the contrary, if I ∪J were

an ideal, then it would be closed under subtraction. Conclude that either j ∈ I or i ∈ J.)

Consider the case that I is a left ideal and J is a right ideal of R.

(d.) Prove that IJ = {i1j1 + · · ·+ injn | n ≥ 1, i1, . . . in ∈ I, j1, . . . , jn ∈ J} is a two-sided ideal.

(e.) Conclude that for any integer n ≥ 1, the set In consisting of all finite sums of n-fold products

i1 · · · in of elements of I is a left ideal of R called the nth power of I.

Exercise 2.7.29. Complete the following steps to prove that for any two-sided ideals I and J of a

rng R, it is not in general true that I ∗ J = {ij | i ∈ I and j ∈ J} is an ideal of R.

(i.) Prove that for R = Z[x], the ideals I = (2, x) and J = (3, x) satisfy that the monomial x can

be written as f(x)g(x) + h(x)k(x) for some polynomials f(x), h(x) ∈ I and g(x), k(x) ∈ J.

(ii.) Prove that x cannot be written as p(x)q(x) for any polynomials p(x) ∈ I and q(x) ∈ J.

(iii.) Conclude from the previous two steps that I ∗ J is not closed under addition.

Exercise 2.7.30. Prove that if R ⊇ S are rngs, then I + S is an ideal of R for any ideal I of R.

Exercise 2.7.31. Prove that if R ⊇ S are rngs, then I ∩ S is an ideal of S for any ideal I of R.

Exercise 2.7.32. Consider any commutative unital ring R. Prove that if M is a proper ideal of R

and x is any element of R \M, then the set M +Rx = {m+ rx | m ∈M and r ∈ R} is an ideal of

R such that M +Rx properly contains M, i.e., we have that M +Rx ⊋M.
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Exercise 2.7.33. Consider any commutative unital ring R. Prove that if I is an ideal of R, then

the set
√
I = {r ∈ R | rn ∈ I for some integer n ≥ 1} is an ideal of R called the radical of I.

(Hint: Consider the Binomial Theorem as it applies to the sums of elements of I.)

Exercise 2.7.34. Consider any commutative unital ring R. Prove that if I and J are any ideals of

R, then the set (I : J) = {r ∈ R | rJ ⊆ I} is an ideal of R called the ideal quotient of I by J.

Exercise 2.7.35. Consider any rng R with any two-sided ideal I.

(a.) Prove that if R is commutative, then R/I is commutative.

(b.) Prove that if R has multiplicative identity 1R, then R/I has multiplicative identity 1R + I.

Exercise 2.7.36. Prove that if R is any rng and I is any two-sided ideal of R, then there exists

a rng S and a rng homomorphism φ : R → S such that kerφ = I. Conclude that every two-sided

ideal of a rng R is the kernel of some rng homomorphism from R. Compare with Exercise 1.12.92.

Exercise 2.7.37. Consider any ring R with any two-sided ideals I and J.

(a.) Prove that φ : R → R/I ×R/J defined by φ(r) = (r + I, r + J) is rng homomorphism.

(b.) Completely describe kerφ in terms of the two-sided ideals I and J.

Exercise 2.7.38. Prove that if R is any rng with any two-sided ideals I and J, then φ : R/I → R/J

defined by φ(r + I) = r + J is a well-defined surjective rng homomorphism if and only if I ⊆ J.

Exercise 2.7.39. We will in this exercise exhibit some of the strange properties of external direct

products of rings. Concretely, we will exhibit an example of a commutative unital ring that admits

a commutative unital subring that is not an ideal. Consider the commutative unital ring Z× Z.

(a.) Prove that the diagonal ∆Z = {(n, n) | n ∈ Z} of Z is a commutative unital subring of Z×Z.

(b.) Prove that ∆Z is not closed under multiplication by elements of Z×Z, i.e., ∆Z is not an ideal.

(c.) Prove that Z× {0} = {(n, 0) | n ∈ Z} is an ideal of Z× Z.

(d.) Prove that Z and Z× {0} are isomorphic as commutative unital rings.

Exercise 2.7.40. Prove that if I is any two-sided ideal of a rng R and J is any two-sided ideal of

a rng S, then I × J is a two-sided ideal of the external direct product R× S.

Exercise 2.7.41. Complete the following steps to prove that if R is a unital ring and S is any rng,

then a two-sided ideal of R× S has the form I × J for some two-sided ideals I of R and J of S.

(i.) Given any ideal K of R×S, consider the sets I = {r ∈ R | (r, s) ∈ K for some element s ∈ S}
and J = {s ∈ S | (r, s) ∈ K for some element r ∈ R}. Prove that K ⊆ I × J.

(ii.) Prove that I is a two-sided ideal of R and J is a two-sided ideal of S.

(iii.) By definition of I and J, for every element (r, s) ∈ I×J, there exist elements x ∈ R and y ∈ S

such that (r, y), (x, s) ∈ K. Prove that (r, ys) and (x, ys) are elements of K.

(iv.) Conclude that (r− x, 0S) is an element of K so that (r, s) is an element of K and I × J ⊆ K.

(v.) Conclude by the previous steps and Exercise 2.7.40 that every two-sided ideal of the direct

product of unital rings has the form I × J for some two-sided ideals I of R and J of S.

https://brilliant.org/wiki/binomial-theorem-n-choose-k/
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Exercise 2.7.42. Consider the non-commutative unital ring Rn×n consisting of real n×n matrices

for some positive integer n ≥ 2. Prove that the set I ⊆ Rn×n of all real n× n matrices whose first

row consists entirely of zeros is a right ideal of Rn×n that is not a left ideal of Rn×n.

Exercise 2.7.43. Consider the non-commutative unital ring Rn×n consisting of real n×n matrices

for some positive integer n ≥ 2. Complete the following steps to prove that there are no non-trivial

two sided ideals of Rn×n, i.e., the only nonzero ideal of Rn×n is the entire ring Rn×n itself.

(i.) By definition, if I is any nonzero ideal of Rn×n, then there exists a nonzero real n× n matrix

A ∈ I. Prove that for any nonzero component aij of A, the matrix consisting of zeros in every

component other than the (i, j)th component and whose (i, j)th component is aij lies in I.

(ii.) Conclude from the previous step that the matrix Eij consisting of zeros in every component

other than the (i, j)th component and whose (i, j)th component is 1 lies in I.

(iii.) Prove that the matrices Eij consisting of zeros in every component other than the (i, j)th

component and whose (i, j)th component is 1 lie in I for all integers 1 ≤ i ≤ n and 1 ≤ j ≤ n.

(iv.) Conclude from the previous step that every real n× n matrix lies in I so that I = Rn×n.

Exercise 2.7.44. Classify the ideals of the following direct products of commutative unital rings.

(a.) Z× Z

(d.) aZ× bZ

(b.) Q×Q

(e.)
Z
2Z

× Z
3Z

(c.) Z× Z× Z

(f.)
Z
6Z

× Z
15Z

(Hint: Use Exercise 2.7.41. Consider the Fourth Isomorphism Theorem for Rngs for parts (a.) and

(b.). Consider Exercise 2.7.45 for parts (c.), (d.), and (e.). Use Corollary 2.4.19 for part (f.).)

We refer to a rng R for which all (one-sided) ideals are principal as a principal ideal rng.

Exercise 2.7.45. Complete the following steps to prove that every ideal of Z is principal.

(i.) Prove that if I is a nonzero ideal of Z, then I admits a smallest positive element a.

(ii.) Conclude from the previous step that I contains the principal ideal aZ, i.e., I ⊇ aZ.

(iii.) Conversely, use the Division Algorithm to prove that I ⊆ aZ. Conclude that I is principal.

Exercise 2.7.46. Prove that if R is any principal ideal rng and I is any two-sided ideal of R, then

the quotient rng R/I is a principal ideal rng.

Exercise 2.7.47. Prove or disprove that each pair of commutative unital rings are isomorphic.

(a.) C and R× R (b.) C and R2×2 (c.) Rn×n and Rn2
(d.) Cn and R2n

Exercise 2.7.48. Consider the commutative unital rings Z4 and Z12.

(a.) Prove that φ : Z12 → Z4 defined by φ(n) = n is a well-defined surjective ring homomorphism.

(b.) Compute the kernel of φ; then, express Z4 as a proper quotient of Z12.
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Exercise 2.7.49. Consider the commutative unital rings Z and Z/2Z× Z/3Z.

(a.) Prove that φ : Z → Z/2Z× Z/3Z with φ(n) = (n+ 2Z, n+ 3Z) is a ring homomorphism.

(b.) Prove that every element (a+2Z, b+3Z) of the external direct product Z/2Z×Z/3Z can be

written as n(1 + 2Z, 1 + 3Z) for some integer 1 ≤ n ≤ 6. Conclude that φ is surjective.

(c.) Compute the kernel of φ; then, express Z/2Z× Z/3Z as a proper quotient of Z.

Exercise 2.7.50. Consider any commutative unital rings R and S.

(a.) Prove that φ : R×S → R defined by φ(r, s) = r is a surjective ring unital ring homomorphism.

(b.) Compute the kernel of φ; then, express R as a proper quotient of R× S.

Exercise 2.7.51. Complete the following proof of the Second Isomorphism Theorem for Rngs.

(a.) Prove that S + I = {s+ i | s ∈ S and i ∈ I} is a subrng of R.

(b.) Prove that I is a two-sided ideal of S + I. Conclude that (S + I)/I is a rng.

(c.) Conclude by Exercise 2.7.31 that I ∩ S is a two-sided ideal of S.

(d.) Prove that the function φ : S → (S + I)/I defined by φ(s) = s+ I is a well-defined surjective

rng homomorphism such that kerφ = I ∩ S.

(e.) Conclude by the First Isomorphism Theorem for Rngs that S/(I ∩ S) ∼= (S + I)/I.

Exercise 2.7.52. Complete the following proof of the Third Isomorphism Theorem for Rngs.

(a.) Prove that J is a two-sided ideal of the subrng I of R.

(b.) Prove that that I/J is a two-sided ideal of R/J.

(c.) Prove that the function φ : R/J → R/I defined by φ(r+J) = r+I is a well-defined surjective

rng homomorphism such that kerφ = I/J.

(d.) Conclude by the First Isomorphism Theorem for Rngs that (R/J)/(I/J) ∼= R/I.

Exercise 2.7.53. Prove that Z[
√
n ] = {a+ b

√
n | a, b ∈ Z} is an integral domain for any n ∈ Z.

Exercise 2.7.54. Prove that the quotient ring Z[x]/(x) is an integral domain.

Exercise 2.7.55. Prove that Q(
√
α) = {a+ b

√
α | a, b ∈ Q} is a field for any rational number α.

Exercise 2.7.56. Prove that the quotient ring Q[x]/(3x+ 4) is a field.

Exercise 2.7.57. We say that an element r of a rng R is idempotent if it holds that r2 = r.

(a.) Prove that if R is a non-unital rng, then the idempotent elements of R are zero divisors of R.

(b.) Prove that if R is a domain, then the only idempotent elements of R are 0R and 1R.

(c.) Exhibit a commutative unital ring R with a nonzero idempotent element.
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Exercise 2.7.58. We say that an element r of a rng R is nilpotent if there exists an integer n ≥ 1

such that rn = 0R. We refer to ind(r) = min{k ≥ 1 | rk = 0R} as the index of nilpotency of r.

(a.) Prove that if R is a domain, then the only nilpotent element of R is 0R.

(b.) Exhibit a commutative unital ring R with a nonzero nilpotent element.

(c.) Prove that the collection
√
0R of nilpotent elements of a rng R is a two-sided ideal of R.

(d.) Prove that the quotient ring R/
√
0R contains no nonzero nilpotent elements.

Exercise 2.7.59. We say that a nonempty subset S of a commutative unital ring R with multi-

plicative identity 1R is multiplicatively closed if 1R ∈ S and st ∈ S for any elements s, t ∈ S.

Prove that S = {r ∈ R | r is not a zero divisor} is a multiplicatively closed subset of R.

Exercise 2.7.60. Give an example of a non-unital rng R that satisfies the Zero Product Property.

Exercise 2.7.61. Prove or disprove that if R and S are domains, then R× S is a domain.

Exercise 2.7.62. Prove that any domain R whose only ideals are {0R} and R is a skew field.

Exercise 2.7.63. Prove that if R is a nonzero finite commutative rng with no zero divisors, then

R admits a multiplicative identity element. Conclude that R must be a field.

(Hint: Every injective rng homomorphism from R to itself is surjective by Proposition 0.1.86.)

Exercise 2.7.64. Complete the following steps to prove that every element of a finite unital ring

R is either a zero divisor or a unit of the ring. Conclude that R = zd(R)∪U(R) is a partition of R.

(i.) Given any nonzero element x of a finite unital ring R, prove that the function φx : R → R

defined by φx(r) = xr is injective if and only if x is not a left zero divisor of R.

(ii.) Given any nonzero element x of a finite unital ring R, prove that the function ψx : R → R

defined by ψx(r) = rx is injective if and only if x is not a right zero divisor of R.

(iii.) Prove that a nonzero element x of a finite unital ring R is a left zero divisor of R if and only

if it is a right zero divisor of R. Conclude that x is either a zero divisor of R or not.

(iv.) Conclude that if a nonzero element x of a finite unital ring R is not a zero divisor of R, then

there exist nonzero elements y, z ∈ R such that xy = 1R and zx = 1R. Prove that y = z; then,

conclude that if x is not a zero divisor of R, then x must be a unit of R.

Exercise 2.7.65. (Souvik Dey) Prove that if R is a commutative unital ring such that the quotient

ring R/I is finite for every nonzero ideal I of R, then R is an integral domain.

Exercise 2.7.66. Consider any integral domain R that contains a field k. Prove that if R is a

finite-dimensional vector space over k, then R must be a field.

(Hint: Prove that for every nonzero element x ∈ R, the function φx : R → R defined by φx(r) = xr

is a k-linear transformation. Use the Rank-Nullity Theorem to prove that φ is surjective.)

Exercise 2.7.67. Prove that there are no nonzero unital ring homomorphisms φ : Q → Z.
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Exercise 2.7.68. Complete the following steps to prove that every finite field is isomorphic to

Z/pZ for some prime number p. Conclude that Z/pZ is the only finite field (up to isomorphism).

(i.) Consider any finite field k. Prove that the function φ : Z → k defined by φ(n) = n · 1k is a

surjective unital ring homomorphism.

(ii.) Prove that the kernel of φ is the principal ideal pZ for some prime number p.

(iii.) Conclude by the First Isomorphism Theorem for Rngs that k is isomorphic to Z/pZ.

Exercise 2.7.69. Prove that a real n×n matrix A that is a left zero divisor is a right zero divisor.

Exercise 2.7.70. Consider the non-commutative unital ring kn×n consisting of all n× n matrices

over the field k for some fixed integer n ≥ 2. Generalize the proof of Exercise 2.7.43 to prove that

there are no non-trivial two sided ideals of kn×n, i.e., the only nonzero ideal of kn×n is kn×n.

Exercise 2.7.71. Give an example of a maximal ideal of Z× Z; then, give an example of a prime

ideal of Z× Z that is not maximal. Completely justify your work with proof.

Exercise 2.7.72. Classify all prime ideals of the following commutative unital rings.

(a.) Z (b.) Q (c.) R (d.)
Z
7Z

(e.)
Z
30Z

(f.)
Z
2Z

× Z
3Z

Exercise 2.7.73. Classify all maximal ideals of the following commutative unital rings.

(a.) Z (b.) Q (c.) R (d.)
Z
7Z

(e.)
Z
30Z

(f.)
Z
2Z

× Z
3Z

Exercise 2.7.74. Prove that I = {3k + 3ℓi | k, ℓ ∈ Z} is a maximal ideal of the Gaussian integers

Z[i] such that the quotient ring Z[i]/I is a field with nine elements.

Exercise 2.7.75. Consider the commutative unital ring R[x] of real polynomials in indeterminate

x. Prove that for any elements a, b ∈ R such that a is nonzero, the ideal (ax+ b) of R[x] is maximal.

(Hint: Prove that the quotient ring R[x]/(ax+ b) is isomorphic to the field R.)

Exercise 2.7.76. Consider the commutative unital ring R[x] of real polynomials in indeterminate

x. Complete the following steps to prove that (x2 + 1) is a maximal ideal of R[x].

(i.) Prove that R[x]/(x2 + 1) = {ax+ b+ (x2 + 1) | a, b ∈ R}.

(ii.) Prove that the function φ : R[x]/(x2 + 1) → C defined by φ(a + bx + (x2 + 1)) = a + bi is a

well-defined bijective unital ring homomorphism.

Exercise 2.7.77. Consider the commutative unital ring C0(R) consisting of continuous real func-

tions f : R → R under pointwise multiplication (fg)(x) = f(x)g(x).

(a.) Prove that for every real number α, the ideal Iα = {f : R → R | f(α) = 0} is maximal.

(b.) Prove that for the ideals Ie and Iπ defined in part (a.), the ideal Ie ∩ Iπ is not prime.

(c.) Prove that the ideal of C0(R) generated by the zero function is not prime.
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Exercise 2.7.78. Consider the commutative unital ring R[x, y, z] of real polynomials in the inde-

terminates x, y, and z. Prove that I = (x, y) is a prime ideal R[x, y, z].
Exercise 2.7.79. Consider the commutative unital ring C[x, y] of complex polynomials in indeter-

minates x and y. (One can view this as the ring of polynomials in y with coefficients in C[x].)

(a.) Prove that the quotient ring C[x, y]/(xy) is not an integral domain.

(b.) Prove that (x) is an ideal of C[x, y] that contains (xy).

(c.) Prove that the quotient ring
C[x, y]/(xy)
(x)/(xy)

is isomorphic to C[x, y]/(x).

(d.) Prove that the function φ : C[x, y] → C[x] defined by φ(p(x, y)) = p(x, 0) is a surjective unital

ring homomorphism such that kerφ = (x).

(Hint: We may write p(x, y) = q(x, y)x+ r(y) for some polynomial r(y) in C[y].)

(e.) Conclude by the First Isomorphism Theorem for Rngs that C[x, y]/(x) ∼= C[x]

(f.) Conclude that (x)/(xy) is a prime ideal of C[x, y]/(xy).

Exercise 2.7.80. Prove that if P is any prime ideal of a commutative unital ring R, then the set

complement R \ P = {r ∈ R | r /∈ P} of P in R is a multiplicatively closed subset of R.

Exercise 2.7.81. Consider distinct maximal ideals M1 and M2 of a commutative unital ring R.

(a.) Prove that M1 ∩M2 is not prime.

(b.) Prove that M1 +M2 = R. We say in this case that the ideals M1 and M2 are comaximal.

(c.) Prove that for any integer n ≥ 1, we have that Mn
1 +Mn

2 = R.

(Hint: Prove that if M is any maximal ideal of R such that Mn
1 +Mn

2 ⊆ M, we have that

M1 +M2 ⊆M. Conclude that Mn
1 +Mn

2 must contain every maximal ideal of R.)

Exercise 2.7.82. Consider the commutative unital ring R[x, y] of bivariate real polynomials. Given

any positive integer n ≥ 1 and any distinct points P1(a1, b1) and P2(a2, b2) in R×R, prove that for
each polynomial f(x, y) ∈ R[x, y], there exist polynomials g(x, y), h(x, y) ∈ R[x, y] with

1.) f(x, y) = g(x, y) + h(x, y);

2.) g(x, y) and all of its partial derivatives of order less than n vanish at P1; and

3.) h(x, y) and all of its partial derivatives of order less than n vanish at P2.

(Hint: Consider the result of Exercise 2.7.81.)

Exercise 2.7.83. Consider any integral domain R and any collection {Pn}∞n=1 of prime ideals of R.

(a.) Prove that if P1 ⊇ P2 ⊇ P3 ⊇ · · · is a descending chain, then ∩∞
n=1Pn is a prime ideal.

(b.) Give an explicit counterexample to part (a.) when the primes do not form a descending chain.

(Hint: Consider any pair of distinct prime ideals of the ring of integers Z.)



Chapter 3

Essential Topics in Field Theory

Ring theory is the study of objects for which there exists a notion of addition and multiplication.

Common mathematical structures such as the real numbers, real polynomials, and real square ma-

trices are all examples of rings with respect to the appropriate notion of addition and multiplication.

Often, the assumption is made that the multiplication defined in a ring is commutative, i.e., the

order of two elements in a product does not matter. Broadly, this area of ring theory is referred

to as commutative algebra, and it involves more general algebraic structures associated to rings.

Commutative algebra hosts many interesting and challenging unresolved questions; however, the

techniques inherent to the field can also be used to study objects arising in combinatorics, geometry,

number theory, and topology. Elsewhere, there exists a rich theory of non-commutative rings; these

sorts of rings arise naturally in relation to operator theory and topological ring theory.

3.1 Polynomial Rings and Polynomial Long Division

Given any rng R, define the collection of univariate polynomials in indeterminate x over R by

R[x] = {rnxn + · · ·+ r1x+ r0 | n ≥ 0 is an integer and r0, r1, . . . , rn ∈ R}.

Each rng element ri is called the coefficient of the monomial xi; the element r0 is the constant

term; the largest non-negative integer n for which the coefficient rn of the monomial xn is nonzero

is the degree of the polynomial; and the coefficient rn of the monomial xn in this case is called the

leading coefficient. Conventionally, the degree of the zero polynomial 0R is −∞.

Polynomials over arbitrary rngs can be equipped with an addition and multiplication extending

that of real polynomials. Explicitly, for any rng R, any integers n ≥ m ≥ 0, and any polynomials

p(x) = rmx
m + · · ·+ r1x+ r0 and q(x) = snx

n + · · ·+ s1x+ s0 in R[x], we define the following.

p(x) + q(x) = snx
n + · · ·+ sm+1x

m+1 + (rm + sm)x
m + · · ·+ (r1 + s1)x+ (r0 + s0)

p(x)q(x) =
m+n∑
j=0

(
j∑

i=0

risj−i

)
xj = rmsnx

m+n + · · ·+ (r0s1 + r1s0)x+ r0s0

Each of the sums ri + si for each integer 0 ≤ i ≤ m is an element of R because (R,+) is an abelian

group. Likewise, for each integer 0 ≤ j ≤ m + n, the product risj−i is an element of R for each

178
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integer 0 ≤ i ≤ j because R is closed under multiplication, hence the sum of these products

j∑
i=0

risj−i = r0sj + r1sj−1 + · · ·+ rj−1s1 + rjs0

yields an element of R once again because (R,+) is an abelian group. We conclude therefore that

this addition and multiplication both constitute binary operations on R[x]. Even more, this addition

is associative and commutative because R is an abelian group; the zero polynomial 0R satisfies the

property that p(x)+0R = p(x) = 0R+p(x) for all polynomials p(x) ∈ R[x]; and the additive inverse

of a polynomial p(x) = rmx
m + · · · + r1x + r0 must be the polynomial of R[x] whose coefficients

are the additive inverses of the coefficients of p(x), i.e., −p(x) = (−rm)xm + · · · + (−r1)x + (−r0).
Combined, these observations all yield that R[x] is an abelian group under polynomial addition.

Proposition 3.1.1. Given any rng R, the collection R[x] of univariate polynomials in indeterminate

x with coefficients in R forms a rng with respect to polynomial addition and polynomial multiplication

of which R is a subrng. Even more, if R is a unital ring with multiplicative identity 1R, then R[x] is a

unital ring with multiplicative identity 1R. Likewise, if R is commutative, then R[x] is commutative.

Proof. By the exposition preceding the statement of the proposition, it suffices to prove that poly-

nomial multiplication is associative and distributive. Consider any polynomials p(x) =
∑ℓ

i=0 rix
i,

q(x) =
∑m

i=0 six
i, and r(x) =

∑n
i=0 tix

i. We demonstrate that p(x)(q(x)r(x)) = (p(x)q(x))r(x).

p(x)(q(x)r(x)) = p(x)

(
m+n∑
j=0

(
j∑

i=0

sitj−i

)
xj

)

=
ℓ+m+n∑
k=0

(
k∑

j=0

rj

(
k−j∑
i=0

sitk−j−i

))
xk

=
ℓ+m+n∑
k=0

(
k∑

j=0

k−j∑
i=0

rj(sitk−j−i)

)
xk

=
ℓ+m+n∑
k=0

(
k∑

j=0

j−i∑
i=0

(risj−i)tk−j

)
xk

=
ℓ+m+n∑
k=0

(
k∑

j=0

(
j∑

i=0

risj−i

)
tk−j

)
xk

=

(
ℓ+m∑
j=0

(
j∑

i=0

risj−i

)
xj

)
r(x) = (p(x)q(x))r(x)
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Explicitly, the sums involved in the previous displayed equations are all finite, hence we may com-

bine and reindex as desired; the associativity of R guarantees that the third and fifth equalities

holds. Likewise, the distributive property of polynomial multiplication can be established by per-

forming a similar argument as before using the definitions of polynomial addition and polynomial

multiplication and appealing to the distributive property of R; we omit the details. Last, we note

that R is a subrng of R[x] because polynomial addition and polynomial multiplication are binary

operations on R: indeed, these are simply the addition and multiplication already defined on R.

We will assume now that R is a unital ring with multiplicative identity 1R. By definition of

polynomial multiplication, it follows that p(x)1R = p(x) = 1Rp(x) for all polynomials p(x) ∈ R[x].

Consequently, by the fourth part of Proposition ??, we conclude that R[x] is a unital ring with

multiplicative identity 1R. Even more, if R is commutative, then R[x] must be commutative because

risj−i = sj−iri for all integers 0 ≤ i ≤ j and 0 ≤ j ≤ ℓ+m so that p(x)q(x) = q(x)p(x).

Example 3.1.2. We are quite familiar with real polynomials already; however, we can also restrict

our attention to polynomials with integer coefficients. By Proposition 3.1.1, the unital subring Z of

R induces a unital subring Z[x] of R[x]. Polynomials with integer coefficients behave in some ways

quite differently than polynomials with real coefficients. Explicitly, the polynomial x2 − 2 of Z[x]
cannot be factored in Z[x] because it has no roots in Z. Consequently, x2−2 is irreducible in Z[x];
however, in R[x], we know that it factors non-trivially as (x−

√
2)(x+

√
2).

Example 3.1.3. Consider the commutative unital polynomial ring (Z/4Z)[x]. Conventionally, the
coefficients of the polynomials in this ring are not written as left cosets; rather, they are simply

written as integers with the tacit understanding that addition and multiplication of polynomials

occurs modulo 4. Occasionally, it is beneficial to write a polynomial of (Z/4Z)[x] as p(x) (mod 4)

to underscore the fact that the coefficients are taken modulo 4. Explicitly, the polynomial 2x + 3

of (Z/4Z)[x] satisfies that (2x + 3)(2x + 3) = 4x2 + 12x + 9 ≡ 1 (mod 4), hence 2x + 3 is a

unit of (Z/4Z)[x]. Even more, the polynomial 2x+ 2 of (Z/4Z)[x] satisfies that (2x+ 2)(2x+ 2) =

4x2+8x+4 ≡ 0 (mod 4). Consequently, it is possible to find non-constant polynomials in (Z/4Z)[x]
that are units, and the degree of a product of polynomials in (Z/4Z)[x] is not necessarily the sum of

the degrees of the polynomials; this stands in stark contrast to the situation with real polynomials.

Generally, polynomials over arbitrary rngs exhibit very strange and unpredictable behavior, and

they can be difficult to understand beyond the details we have provided (cf. Exercises 3.7.1 and

3.7.2). Our next propositions illustrate that polynomial rings over domains are more civilized.

Particularly, they do not admit any of the wonky behavior of polynomial rngs over general rngs.

Proposition 3.1.4. Given any rng R, we have that R is a domain if and only if R[x] is a domain.

Even more, if R is a domain, then deg(pq) = deg(p) + deg(q) for all polynomials p(x), q(x) ∈ R[x].

Proof. If R[x] is a domain, then R is a domain: indeed, R is a subring of R[x] by Proposition 3.1.1,

and any subring of a domain is a domain. Conversely, we will assume that R is a domain. Consider

any nonzero polynomials p(x) = rmx
m+ · · ·+ r1x+ r0 and q(x) = snx

n+ · · ·+ s1x+ s0 of R[x] with
respective degrees m and n. Observe that the leading coefficient of p(x)q(x) is by definition rmsn.

By hypothesis that R is a domain and rm and sn are nonzero elements of R, it follows that rmsn
is nonzero, hence p(x)q(x) is a nonzero polynomial such that deg(pq) = m + n = deg(p) + deg(q).

Consequently, every nonzero element of R[x] is regular, hence R[x] is a domain.
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Proposition 3.1.5. Given any domain R, we have that u is a unit of R[x] if and only if u is a

unit of R. Put another way, the units of R[x] and the units of R coincide.

Proof. Certainly, if u is a unit of R, then the constant polynomial u is a unit of R[x]. Conversely,

we will assume that u = rnx
n + · · ·+ r1x+ r0 is a unit of R[x]. Consequently, there exist elements

s0, s1, . . . , sm ∈ R not all of which are zero such that u−1 = smx
m + · · ·+ s1x+ s0 and uu−1 = 1R.

By hypothesis that R is a domain, it follows by Proposition 3.1.4 that R[x] is a domain, and we

must have that 0 = deg(1R) = deg(uu−1) = deg(u) + deg(u−1). Considering that u and u−1 are

nonzero polynomials, their degrees must be non-negative; they sum to 0 if and only if u and u−1

are constant. We conclude that u = r0 and u−1 = s0 with r0s0 = 1R, i.e., u is a unit of R.

Even in the case of polynomials with coefficients lying in a domain, there exist subtle obstruc-

tions. Explicitly, it is not possible to obtain the integer polynomial 2x + 3 as a polynomial of the

form 2x+3 = q(x)(3x−4)+r(x) for some integer polynomials q(x) and r(x) such that r(x) is either

the zero polynomial or a constant polynomial: indeed, the leading coefficient of q(x)(3x− 4)+ r(x)

must be divisible by 3, so it cannot be 2x+ 3. Consequently, polynomials with coefficients lying in

an arbitrary domain do not necessarily admit some analogy of the Division Algorithm.

Conversely, if we restrict our attention to monic polynomials (i.e., polynomials with leading

coefficient 1R) with coefficients in an arbitrary rng R, then it is possible to uniquely divide any

polynomial of R[x] by a monic polynomial of R[x] (possibly with remainder). Explicitly, for the

integer polynomial 2x+3 and the monic polynomial x+1, we may write 2x+3 = 2(x+1)+1 such

that the polynomials 2 and 1 are uniquely determined. We reserve the general case of this fact as

Exercise 3.7.7; however, we will prove this for polynomials with coefficients in a domain.

Theorem 3.1.6 (Polynomial Division Algorithm). Given any domain R, any monic polynomial

p(x), and any polynomial f(x) in R[x], there exist unique polynomials q(x) and r(x) in R[x] such

that f(x) = p(x)q(x) + r(x) and either r(x) = 0R or 0 ≤ deg(r) ≤ deg(p)− 1.

Proof. By Proposition 3.1.4 and our assumption that R is a domain, for all polynomials q(x) ∈ R[x],

we have that deg(pq) = deg(p) + deg(q). Consequently, the unique expression of 0R in the desired

form of the theorem statement is 0R = 0R + 0R = p(x)0R + 0R. We may assume therefore that

f(x) is nonzero so that deg(f) = n is a non-negative integer. Observe that if deg(p) − 1 ≥ n ≥ 0,

then f(x) = 0R + f(x) = p(x)0R + f(x) is the unique expression of f(x) in the desired form of the

theorem statement. Consequently, we may assume that deg(f) = n ≥ m = deg(p), in which case

we may proceed by the Principle of Complete Induction on n. Consider the leading coefficient rn of

f(x). By assumption that p(x) is a monic polynomial of degree m ≤ n, the polynomial rnx
n−mp(x)

has degree n with leading coefficient rn so that f(x)− rnx
n−mp(x) is a polynomial of strictly lesser

degree than f(x). By our inductive hypothesis, there exist polynomials q(x) and r(x) in R[x] such

that f(x) − rnx
n−mp(x) = p(x)q(x) + r(x) and either r(x) = 0R or 0 ≤ deg(r) ≤ deg(p) − 1. By

rearranging this expression, we find that f(x) = p(x)(rnx
n−m + q(x)) + r(x), hence the existence of

the desired polynomial of the theorem statement is established. We prove that they are unique.

Consider any polynomials q1(x), q2(x), r1(x), and r2(x) such that f(x) = p(x)q1(x) + r1(x) and

f(x) = p(x)q2(x) + r2(x) and either both r1(x) and r2(x) are the zero polynomial or one of the

inequalities 0 ≤ deg(r1) ≤ deg(p) − 1 or 0 ≤ deg(r2) ≤ deg(p) − 1 holds. Crucially, observe that

either way, we must have that deg(r2 − r1) ≤ deg(p) − 1. By rearranging the two aforementioned
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identities of f(x), we obtain an identity p(x)(q1(x) − q2(x)) = r2(x) − r1(x). On the contrary, if it

were the case that q1(x) and q2(x) were not equal, then their difference q1(x) − q2(x) would be a

nonzero polynomial so that deg(q1 − q2) ≥ 0. By the first paragraph of the proof, we would have

that deg(p)−1 ≥ deg(r2−r1) = deg(p(q1−q2)) = deg(p)+deg(q1−q2) ≥ deg(p) — a contradiction.

We conclude therefore that q1(x) = q2(x), from which it follows that r1(x) = r2(x).

Essentially, the Polynomial Division Algorithm allows us to perform the usual polynomial long

division from high school algebra in the more general setting of polynomial rngs over arbitrary rngs.

Given any polynomial identity of the form f(x) = p(x)q(x) + r(x), we refer to the polynomial f(x)

as the dividend; p(x) is the divisor; q(x) is the quotient; and r(x) is the remainder.

Example 3.1.7. Let us perform polynomial long division to find the quotient q(x) and the remain-

der r(x) of the polynomial f(x) = 3x3 +2x2 − x+1 divided by the monic polynomial p(x) = x− 1.

3x2 + 5x+ 4

x− 1
)

3x3 + 2x2 − x+ 1

− 3x3 + 3x2

5x2 − x

− 5x2 + 5x

4x+ 1

− 4x+ 4

5

Explicitly, we begin by eliminating the leading term of 3x3 by multiplying x−1 by 3x2 and subtract-

ing the resulting polynomial 3x3 − 3x2 from the dividend; the resulting polynomial is 5x2 − x+ 1,

hence we multiply x−1 by 5x and subtract the resulting polynomial 5x2−5x from 5x2−x+1 to ob-

tain 4x+1; and last, we multiply x−1 by 4 and subtract the resulting polynomial 4x−4 from 4x+1

to obtain a remainder of 5. Ultimately, we have that 3x3 +2x2 − x+1 = (x− 1)(3x2 +5x+4)+ 5.

Example 3.1.8. Let us perform polynomial long division to find the quotient q(x) and the remain-

der r(x) of the polynomial f(x) = x3 + x+ 1 divided by the monic polynomial p(x) = x+ 2.

x2 − 2x + 5

x+ 2
)

x3 + x + 1

− x3 − 2x2

− 2x2 + x

2x2 + 4x

5x + 1

− 5x− 10

− 9

Consequently, we have that x3 + x + 1 = (x + 2)(x2 − 2x + 5) − 9. Observe that if we view the

coefficients of these polynomials as elements of Z/3Z, then x3 + x+ 1 is divisible by x+ 2 modulo

3 because we have that x3 + x+ 1 = (x+ 2)(x2 − 2x+ 5)− 9 ≡ (x+ 2)(x2 + x+ 2) (mod 3).
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Often, polynomials are viewed throughout mathematics as functions for which the indeterminate

x is viewed as a variable that can be substituted with values from the rng of coefficients; however,

we have not and will continue not to adopt this viewpoint. Explicitly, in our case, polynomials

offer a construction that allow us to understand the properties of the rng of coefficients. On the

other hand, for any polynomial rng R[x] with coefficients in a rng R and for each element α ∈ R,

we are afforded a rng homomorphism φα : R[x] → R defined by φα(p(x)) = p(α) that is called the

evaluation homomorphism at α: indeed, for any polynomials p(x) = rmx
m + · · ·+ r1x+ r0 and

q(x) = snx
n + · · ·+ s1x+ s0 such that n ≥ m ≥ 0, the following properties hold.

p(α) + q(α) = snα
n + · · ·+ sm+1α

m+1 + (rm + sm)α
m + · · ·+ (r1 + s1)α + (r0 + s0)

p(α)q(α) = (rmα
m + · · ·+ r1α + r0)(snα

n + · · ·+ s1α + s0) =
m+n∑
j=0

(
j∑

i=0

risi−j

)
αj

Consequently, the first equation above demonstrates that φα(p(x) + q(x)) = φα(p(x)) + φα(q(x)),

and the second equation above shows that φα(p(x)q(x)) = φα(p(x))φ)α(q(x)). We have already

demonstrated in Example 2.3.7 that evaluation homomorphisms can be used to determine explicit

isomorphisms of quotients of polynomial rngs, and we will return to this notion again later.

Consider any element α of any rng R. We will say that α is a root of a polynomial p(x) in R[x]

if and only if p(x) lies in the kernel of the evaluation homomorphism at α if and only if p(α) = 0R.

Our next two propositions relate the roots of a polynomial to its linear factors.

Theorem 3.1.9 (Remainder Theorem). Given any rng R, any polynomial p(x) in R[x], and any

element α ∈ R, the remainder of p(x) modulo the monic linear polynomial x− α is p(α).

Proof. Considering that x− α is a monic polynomial, by Exercise 3.7.7, there exist unique polyno-

mials q(x) and r(x) in R[x] such that p(x) = (x− α)q(x) + r(x) and r(x) is a constant polynomial.

By applying the evaluation homomorphism at α, we find that

p(α) = (α− α)q(α) + r(α) = 0Rq(α) + r(α) = r(α).

Considering that r(α) is a constant polynomial that takes the value of p(α) under the evaluation

homomorphism at α, we conclude that r(x) = p(α), as desired.

Theorem 3.1.10 (Factor Theorem). Given any rng R, any polynomial p(x) in R[x], and any

element α ∈ R, we have that x− α is a factor of p(x) if and only if α is a root of p(x).

Proof. By the Remainder Theorem, if α is a root of p(x), then the remainder of p(x) modulo x−α is

p(α) = 0R, hence there exists a unique polynomial q(x) such that p(x) = (x−α)q(x) and x−α is a

factor of p(x). Conversely, we will assume that x−α is a factor of p(x). By definition, there exists a

unique polynomial q(x) in R[x] with p(x) = (x−α)q(x). By applying the evaluation homomorphism

at α, we find that p(α) = (α− α)q(α) = 0Rq(α) = 0R. We conclude that α is a root of p(x).

Example 3.1.11. By Example 3.1.7 and the Remainder Theorem, we note that the polynomial

f(x) = 3x3 + 2x2 − x+ 1 satisfies that f(1) = 5 because the remainder of f(x) modulo x− 1 is 5.
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Example 3.1.12. By Example 3.1.8 and the Remainder Theorem, we note that the polynomial

f(x) = x3 + x+ 1 satisfies that f(−2) = −9 because the remainder of f(x) modulo x+ 2 is −9.

Combined, the Remainder Theorem and the Factor Theorem provide powerful tools that signif-

icantly reduce the amount of work required to compute the roots of a polynomial in a large number

of cases. Even more, the Rational Roots Theorem narrows down the search for roots of polynomials

with integer coefficients to a finite number of possibilities! We will explore more properties about

the existence of roots of polynomials with integer coefficients in the next section.

Theorem 3.1.13 (Fundamental Theorem of the Roots of Polynomials over a Field). Every non-

constant univariate polynomial p(x) of degree n over a field k admits at most n roots lying in k.

Proof. Consider any non-constant univariate polynomial p(x) of degree n over a field k. We may

denote by r the number of roots of p(x) lying in k. By the Factor Theorem, if there exists a root α1 of

p(x) lying in k, then there exists a unique polynomial q1(x) in k[x] such that p(x) = (x−α1)q1(x).

Corollary 3.1.14 (The Multiplicative Group of a Finite Field Is Cyclic). Given any finite field F,

we have that F ∗ = F \ {0} is a cyclic group with respect to the multiplication defined on F.

Proof. Use the Fundamental Theorem of Finite Abelian Groups. Prove that the least common

multiple lcm(a1, . . . , ar) of the cyclic factors is the product of the cyclic factors: one way is clear

since lcm(a1, . . . , ar) ≤ a1 · · · ar by definition; the other way follows by showing that each element

of F is a root of xlcm(a1,...,ar) − 1 in F [x].

3.2 Polynomial Irreducibility

We turn our attention in this section to the question of polynomial factorization. By the Factor

Theorem, the linear factors of a polynomial are in one-to-one correspondence with the roots of the

polynomial (up to multiplicity), hence the factorizations of a polynomial are intimately connected

with the possible roots of the polynomial; however, as we have seen, the degree of a product of

polynomials over an arbitrary rng need not be the sum of the degrees of the polynomial unless the

rng is in fact a domain. Consequently, we will henceforth assume throughout this section that R is

an integral domain (i.e., a commutative unital ring in which any nonzero element is cancellable) so

that the degree of a polynomial is the sum of the degrees of its proper factors. Given any element

r ∈ R, we say that an element d ∈ R divides R if and only if there exists an element s ∈ R such

that r = ds. We say that a nonzero non-unit element p ∈ R is prime if and only if the principal

ideal (p) = {px | x ∈ R} of R generated by p is a prime ideal of R if and only if p satisfies the

property that if p divides a product rs of elements r, s ∈ R, then either p divides r or p divides

s. Even more, by analogy to the greatest common divisor of integers, we say that for any pair of

nonzero elements r, s ∈ R, a greatest common divisor of r and s is any element d ∈ R such that

(1.) d | r and d | s, i.e., d divides both r and s and

(2.) if d′ is a nonzero element of R such that d′ | r and d′ | s, then d′ | d.
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One can demonstrate that if the greatest common divisor of some nonzero elements of an arbi-

trary integral domain exists, then it is unique up to multiplication by a unit of R. We will not

concern ourselves at the moment with either the existence or the uniqueness of the greatest com-

mon divisor; rather, we will assume that R is an integral domain in which any pair of nonzero

elements r and s admits a greatest common divisor gcd(r, s). Per usual, the greatest common di-

visor gcd(r0, r1, . . . , rn) of any collection of nonzero elements r0, r1, . . . , rn ∈ R can be computed

recursively via gcd(r0, r1, . . . , rn) = gcd(gcd(r0, r1), r2, . . . , rn). Often, it will behoove us to restrict

our attention to the integral domains Z, Q, R, and C in which case our assumptions hold. By

Proposition 3.1.4, we note that under our present hypotheses, the polynomial ring R[x] is an in-

tegral domain. Given any polynomial p(x) = rnx
n + · · · + r1x + r0 in R[x], the content of p(x)

is the element content(p) = gcd(r0, r1, . . . , rn) of R. We say that a polynomial p(x) is primitive

if content(p) is a unit of R; however, this terminology will eventually become ambiguous, so it is

important to bear in mind the context. Our next observation is natural.

Proposition 3.2.1. Let R be an integral domain in which any pair of nonzero elements admits a

greatest common divisor. Let x be an indeterminate over R. Every polynomial p(x) in R[x] can be

factored as the product p(x) = content(p)q(x) for some primitive polynomial q(x) in R[x].

Proof. We will assume that p(x) = rnx
n + · · ·+ r1x+ r0. By definition of greatest common divisor,

each of the coefficients of p(x) is divisible by content(p) = gcd(r0, r1, . . . , rn) — namely, there exist

elements s0, s1, . . . , sn such that ri = content(p)si for each integer 0 ≤ n. Consider the polynomial

q(x) = snx
n+ · · ·+s1x+s0. Observe that p(x) = content(p)q(x), hence it suffices to prove that q(x)

is primitive, i.e., content(q) = gcd(s0, s1, . . . , sn) is a unit of R. Considering that ri = content(p)si,

we may uniquely identify si = ri/ content(p) for each integer 1 ≤ i ≤ n. One can prove using general

considerations that content(q) = gcd(s0, s1, . . . , sn) is a unit of R so that q(x) is primitive.

Even more, we will refer to a polynomial p(x) ∈ R[x] as reducible in R[x] (or over R) if either

(a.) content(p) is not a unit of R or

(b.) there exist non-constant polynomials q(x), r(x) ∈ R[x] such that p(x) = q(x)r(x).

Conversely, we say that p(x) is irreducible over R if and only if it is non-constant and not reducible

if and only if content(p) is a unit of R and p(x) does not factor as a product of two non-constant

polynomials. Consequently, by definition, a primitive polynomial in R[x] is irreducible if and only if

it does not factor as a product of non-constant polynomials in R[x]. Let us look at some examples.

Example 3.2.2. Every monic polynomial in R[x] is primitive because its leading coefficient is 1R.

Example 3.2.3. Consider the polynomial p(x) = 3x2 +7x+1 in Z[x]. By definition, we have that

content(p) = gcd(3, 7, 1) = 1, hence p(x) is primitive in Z[x]. By the Quadratic Formula and the

Factor Theorem, p(x) is irreducible over Z because its roots are non-rational real numbers.

Example 3.2.4. Consider the polynomial p(x) = 4x2 +6x+2 in Z[x]. By definition, we have that

content(p) = gcd(4, 6, 2) = 2, hence p(x) is not primitive in Z[x]; in fact, the primitive polynomial

q(x) = 2x2 + 3x + 1 satisfies that p(x) = 2q(x) = 2(2x2 + 3x + 1). Even still, observe that q(x) is

not irreducible in Z[x] because it holds that q(x) = 2x2 + 3x+ 1 = (2x+ 1)(x+ 1).

https://en.wikipedia.org/wiki/Primitive_polynomial_%28field_theory%29
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Example 3.2.5. Consider the polynomial p(x) = x2 + 2x+ 3 in Q[x]. By definition, we have that

content(p) = gcd(1, 2, 3) = 1, hence p(x) is primitive in Q[x]. Every nonzero polynomial in Q[x] is

primitive in Q[x] because Q is a field, hence any nonzero element of Q is a unit. By the Quadratic

Formula and the Factor Theorem, p(x) is irreducible over Q because its roots are the complex

numbers −1− i
√
2 and −1 + i

√
2. By the same rationale, p(x) is primitive and irreducible in R[x].

Example 3.2.6. Let us find all irreducible quadratic polynomials in (Z/2Z)[x]. Considering that the
only elements of Z/2Z are 0 and 1 (modulo 2), it follows by the Fundamental Counting Principle

that there are only 2 · 2 = 4 quadratic polynomials in (Z/2Z)[x]. Explicitly, the only quadratic

polynomials in (Z/2Z)[x] are x2, x2 + 1, x2 + x, and x2 + x + 1. Clearly, the polynomials x2 and

x2 + x are reducible because they each admit a linear factor of x. On the other hand, it follows

by the Factor Theorem that x2 + 1 is reducible: indeed, we have that 12 + 1 = 2 ≡ 0 (mod 2),

hence 1 is a root of x2 + 1 (modulo 2) and x − 1 ≡ x + 1 (mod 2) is a factor of x2 + 1. One can

verify by polynomial long division that x2 + 1 ≡ (x + 1)(x + 1) (mod 2), but it is also possible to

see this by noticing that x2 + 1 ≡ x2 + 2x + 1 = (x + 1)2 (mod 2). We refer to the phenomenon

x2+1 ≡ (x+1)2 (mod 2) as the Freshman’s Dream. Generally, a factorization of this form holds

for any pair of elements over any ring of prime characteristic (cf. Exercise 3.7.11 for more on the

Freshman’s Dream). Last, we note that x2+x+1 is irreducible in (Z/2Z)[x] because 02+0+1 = 1

and 12 + 1 + 1 = 3 ≡ 1 (mod 2) are both nonzero in Z/2Z, hence x2 + x+ 1 has no linear factors.

Quadratic and cubic polynomials are generally dealt with by appealing to the Factor Theorem:

indeed, the Factor Theorem immediately implies that a primitive quadratic or cubic polynomial is

irreducible in R[x] if and only if it does not admit a root in R. Explicitly, a quadratic polynomial

that is the product of non-constant polynomials must be the product of two linear polynomials,

and a cubic polynomial that is the product of non-constant polynomials must be the product of a

linear polynomial and a quadratic polynomial. Often, however, it requires a bit more machinery to

deduce the irreducibility of polynomials of larger degree. Explicitly, in order to deduce whether a

polynomial of degree exceeding three is reducible, one must check that the polynomial admits no

linear factors or quadratic factors or cubic factors and so on. Continuing in this manner eventually

exhausts all possibilities; however, this process can be tedious, and it is not clear how to discern

the irreducibility of polynomials of large degree. Consequently, we set out to develop some criteria

that will simplify this process. We will restrict our present attention to polynomials with integer,

rational, and real coefficients; however, we note that these tools can be extended to certain “nice”

integral domains. Our first results relate factorizations of primitive polynomials in Z[x] and Q[x].

Lemma 3.2.7. Consider any integral domain R and any indeterminate x over R. Given any fac-

torization p(x) = q(x)r(x) of polynomials p(x), q(x), and r(x) in R[x], if α is a prime element of

R that divides every coefficient of p(x), then either α divides every coefficient of q(x) or α divides

every coefficient of r(x). Put another way, if α | q(x)r(x), then either α | q(x) or α | r(x).

Proof. We will assume that q(x) = aℓx
ℓ + · · · + a1x + a0 and r(x) = bmx

m + · · · + b1x + b0 are

polynomials in R[x]. On the contrary, suppose that the prime element α that divides p(x) = q(x)r(x)

does not divide q(x) or r(x). Consequently, there exists a least integer i such that α does not divide

the ith coefficient ai of q(x), and there exists a least integer j such that α does not divide the jth

coefficient bj of r(x) by the Well-Ordering Principle. Considering that α is a prime element, α

https://brilliant.org/wiki/fundamental-counting-principle/
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cannot divide aibj; however, by assumption, α divides the (i+ j)th coefficient of q(x)r(x)

i+j∑
k=0

akbi+j−k = a0bi+j + · · ·+ ai−1bj+1 + aibj + ai+1bj−1 + · · ·+ ai+jb0

and each of the integers a0, . . . , ai−1 and b0, . . . , bj−1 is divisible by α by construction of ai and bj,

hence α divides aibj — a contradiction. We conclude that α divides q(x) or n divides r(x).

Proposition 3.2.8. Consider a primitive polynomial q(x) in Z[x]. Given any polynomial p(x) in

Z[x], if q(x) divides p(x) as polynomials in Q[x], then q(x) divides p(x) as polynomials in Z[x].

Proof. We will assume that q(x) divides p(x) as polynomials in Q[x]. By definition, there exists a

polynomial r(x) in Q[x] such that p(x) = q(x)r(x). Explicitly, we may write

r(x) =
ai
bi
xi + · · ·+ a1

b1
x+

a0
b0

for some integers ai, . . . , a1, a0 and some nonzero integers bi, . . . , b1, b0. Consider the nonzero integer

b = bi · · · b1b0. Clearing the denominators of the terms of r(x) by multiplying r(x) by b yields a

polynomial br(x) in Z[x] such that bp(x) = q(x)(br(x)), i.e., q(x) divides bp(x) as polynomials in

Z[x]. We conclude that C = {c ∈ Z | q(x) divides cp(x) as polynomials in Z[x]} is a nonempty set.

Consider the least positive integer m such that q(x) divides mp(x) as polynomials in Z[x]. By the

Well-Ordering Principle, such an integer exists. We claim that m = 1 so that q(x) divides p(x) as

polynomials in Z[x]. On the contrary, we will assume that m ≥ 2. By the Fundamental Theorem of

Arithmetic, there exists a prime number n that divides m, i.e., m
n
is a positive integer smaller than

m. Given any polynomial s(x) such that mp(x) = q(x)s(x) as polynomials in Z[x], n must divide

q(x) or n must divide s(x) by Lemma 3.2.7. By assumption that q(x) is primitive, it cannot be

divisible by a prime number n, hence we conclude that s(x) is divisible by n. But this implies that

q(x)
s(x)

n
=
q(x)s(x)

n
=
mp(x)

n
=
m

n
p(x)

as polynomials in Z[x] — contradicting the minimality property that defines m.

Put another way, Proposition 3.2.8 states that if a polynomial with integer coefficients has a

primitive factor when viewed as a polynomial in Q[x], then that primitive factor remains when we

consider the factorization as polynomials in Z[x]. Our next two theorems generalize this to any

factorizations of integer polynomials in Q[x]; they are similarly named after Carl Friedrich Gauss.

Theorem 3.2.9 (Gauss’s Lemma). Given any polynomial p(x) in Z[x], if there exist polynomials

Q(x) and R(x) in Q[x] with p(x) = Q(x)R(x), then there exist polynomials q(x) and r(x) in Z[x] with
p(x) = q(x)r(x). Put another way, if an integer polynomial admits a factorization by polynomials

with rational coefficients, then it admits a factorization by polynomials with integer coefficients.

Proof. We will assume that p(x) = Q(x)R(x) for some polynomials Q(x) and R(x) in Q[x]. By the

proof of Proposition 3.2.8, we may clear the denominators of the coefficients of Q(x) to obtain a

polynomial Q0(x) = αQ(x) of Z[x]. By Proposition 3.2.1, we may factor the polynomial Q0(x) of
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Z[x] as Q0(x) = content(Q0)q(x) for some primitive polynomial q(x) in Z[x]. We have therefore

established that q(x) divides p(x) as polynomials in Q[x], as we have the polynomial identity

p(x) = Q(x)R(x) =
1

α
Q0(x)H(x) =

content(Q0)

α
q(x)H(x) = q(x)

(
content(Q0)

α
R(x)

)
.

By Proposition 3.2.8, there exists a polynomial r(x) in Z[x] such that p(x) = q(x)r(x) in Z[x].

Theorem 3.2.10 (Gauss’s Little Lemma). Consider the univariate polynomial ring Z[x].

1.) We have that p(x) and q(x) are primitive in Z[x] if and only if p(x)q(x) is primitive in Z[x].

2.) Given any non-constant primitive polynomial p(x) in Z[x], we have that p(x) is irreducible in

Z[x] if and only if p(x) is irreducible in Q[x].

Proof. (1.) We will assume first that p(x) and q(x) are primitive polynomials in Z[x]. By Proposition
3.2.1, there exists a primitive polynomial r(x) in Z[x] such that p(x)q(x) = content(pq)r(x). Observe

that as polynomials in Q[x], we have the following factorization of r(x) by p(x).

r(x) = p(x)

(
1

content(pq)
q(x)

)
By assumption that p(x) is a primitive polynomial and r(x) is an integer polynomial, Proposition

3.2.8 yields a nonzero polynomial s(x) in Z[x] such that r(x) = p(x)s(x). By multiplying both

sides of this equation by q(x) and using the fact that p(x)q(x) = content(pq)r(x), it follows that

q(x)r(x) = content(pq)r(x)s(x). Considering that Z[x] is a domain by Proposition 3.1.4, we may can-

cel the nonzero polynomial r(x) on both sides of this equation to find that q(x) = content(pq)s(x).

Comparing the content of each polynomial, we find that content(q) = content(pq) content(s). By

assumption that q(x) is primitive, we have that content(q) = ±1 so that content(pq) = ±1 and

p(x)q(x) is primitive. Conversely, suppose that either p(x) or q(x) is not primitive in Z[x]. Con-
sequently, there exists a prime number n such that n divides p(x) or n divides q(x); either way, n

divides p(x)q(x) so that p(x)q(x) is not primitive because its content is divisible by n.

(2.) By Gauss’s Lemma, if p(x) admits a factorization in Q[x], then p(x) admits a factorization in

Z[x], hence if p(x) is irreducible in Z[x], then it is irreducible in Q[x]. Conversely, if p(x) is irreducible

in Q[x], then it is irreducible in Z[x] because any Z[x]-factorization is a Q[x]-factorization.

Corollary 3.2.11. Every polynomial with integer coefficients that admits a rational number as a

root also admits an integer as a root; this integer divides the constant term of the polynomial.

Proof. We may assume that p(x) = xn + an−1x
n−1 + · · · + a1x + a0 is a polynomial with integer

coefficients such that a0 is nonzero: indeed, the leading coefficient of a polynomial does not affect

the roots of the polynomial, and every polynomial that is divisible by x admits 0 as a root. By

assumption, there exists a rational number α such that p(α) = 0. Consequently, by the Factor

Theorem, it follows that p(x) = (x−α)Q(x) for some polynomial Q(x) in Q[x]. By Gauss’s Lemma

and its proof, there exists a linear polynomial x− a and a monic polynomial q(x) in Z[x] of degree
n−1 such that p(x) = (x−a)q(x). Observe that the constant term of p(x) is a0 = p(0) = −q(0)a.
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Example 3.2.12. We claim that the quartic polynomial p(x) = x4 + x + 1 is irreducible in Q[x].

Consequently, it suffices to prove that p(x) has no linear factors and no quadratic factors: indeed,

if p(x) has no linear factors, then it has no cubic factors, either. By the Factor Theorem, the linear

factors of p(x) correspond to the roots of the polynomial p(x). Corollary 3.2.11 guarantees that the

existence of a rational root induces an integer root dividing the constant term of p(x), so it suffices

to check that 1 and −1 are not roots of p(x); this is clear because p(1) = 3 and p(−1) = 1. By

Gauss’s Lemma, we may restrict our attention to monic quadratic factors of p(x) in Z[x], hence we
may assume that p(x) = (x2 + ax + b)(x2 + cx + d). Expand the right-hand side and compare the

coefficients of x4 + 0x3 + 0x2 + 1x+ 1 = x4 + (a+ c)x3 + (ac+ b+ d)x2 + (ad+ bc)x+ bd.

a+ c = 0 ad+ bc = 1

ac+ b+ d = 0 bd = 1

Considering that bd = 1 and b and d are integers, it follows that b = d = ±1. Either way, the

identities ad + bc = 1 and a + c = 0 yield that 0 = b · 0 = b(a + c) = ab + bc = ad + bc = 1 — a

contradiction. We conclude that p(x) admits no quadratic factors, so it is irreducible in Q[x].

Example 3.2.13. We claim that the quintic polynomial p(x) = x5 − 4x2 +2 is irreducible in Q[x].

Like before, we eliminate the possibility of linear or quartic factors by checking the roots of p(x);

then, we dismiss the possibility of quadratic or cubic factors by inspection. Corollary 3.2.11 reduces

our search for rational roots of p(x) to integer roots that divide 2; therefore, the only possibilities

for a linear factor are the linear polynomials corresponding to the integers ±1 and ±2. One can

verify that p(±1) and p(±2) are all nonzero, hence p(x) does not admit any linear or quartic factors.

Once again, by Gauss’s Lemma, we may restrict our search for quadratic factors to monic quadratic

factors in Z[x]. Consider the case that p(x) = (x2 + ax + b)(x3 + cx2 + dx + e). Expanding these

polynomials and comparing the coefficients yields the following integer equations.

a+ c = 0 ad+ bc+ e = −4 be = 2

ac+ b+ d = 0 ae+ bd = 0

Consequently, we must consider the following four cases arising from the integer equation be = 2.

(1.) Observe that if b = 2 and e = 1, then ae+ bd = 0 implies that a+2d = 0 and a = −2d; then,

c = −a and ac+ b+ d = 0 yield that −4d2 + d = −2 or (4d− 1)d = 2 — a contradiction.

(2.) Observe that if b = −2 and e = −1, then we arrive at the same contradiction as above.

(3.) Observe that if b = 1 and e = 2, then ae+ bd = 0 implies that 2a+ d = 0 and d = −2a; then,

c = −a and ac+ b+ d = 0 yield that −a2 − 2a = −1 or (a+ 2)a = 1 — a contradiction.

(4.) Observe that if b = −1 and e = −2, then we arrive at the same contradiction as above.

We conclude therefore that p(x) admits no quadratic factors, so it is irreducible in Q[x].

Generally, the method of proof outlined in the previous two examples is in theory possible to

carry out for polynomials of arbitrarily large degree; however, as we have seen, this process has its

limitations, as it requires us to solve non-linear systems of integer equations. Carrying this out by
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hand on a case-by-case basis can be extremely tedious and ad hoc — even in the case of quartic and

quintic polynomials — when either the constant term of the integer polynomial has a large number

of prime factors (with multiplicity) or when the polynomial has many nonzero terms.

We turn our attention to a criterion for the irreducibility of a polynomial whose constant term

shares a (multiplicity one) prime factor with each non-leading coefficient. Given any prime number

p, we say that a polynomial q(x) = anx
n + an−1x

n−1 + · · ·+ a1x+ a0 in Z[x] is p-Eisenstein if

(1.) p divides each of the coefficients a0, a1, . . . , an−1 and

(2.) p does not divide the leading coefficient an and

(3.) p2 does not divide the constant term a0.

Theorem 3.2.14 (Eisenstein’s Criterion). If q(x) is a polynomial in Z[x] that is p-Eisenstein for

some prime number p, then q(x) cannot be written as the product of two non-constant polynomials.

Consequently, if q(x) is primitive, then q(x) is irreducible in Z[x], hence q(x) is irreducible in Q[x].

Proof. On the contrary, we will assume that q(x) = r(x)s(x) for some non-constant polynomials

r(x) and s(x) in Z[x]. We may write r(x) = bix
i + · · ·+ b1x+ b0 and s(x) = cjx

j + · · ·+ c1x+ c0 for

some integers b0, b1, . . . , bi, c0, c1, . . . , cj. Consequently, we have that a0 = b0c0, a1 = b1c0 + b0c1, etc.

By hypothesis that p divides a0 and p
2 does not divide a0, one of b0 and c0 must be divisible by p but

not both. We may assume that p divides b0 so that p does not divide c0, in which case the identity

a1 − b0c1 = b1c0 yields that p divides b1. Continuing in this manner, we find that b0, b1, . . . , bi are

divisible by p so that an = bicj is divisible by p — a contradiction. We conclude that one of r(x) or

s(x) is constant, hence q(x) cannot be written as a product of two non-constant polynomials. If q(x)

is primitive, then the constant factor of q(x) must be a unit of Z, hence q(x) must be irreducible

over Z[x]. By Gauss’s Little Lemma, we conclude that q(x) is irreducible in Q[x].

Example 3.2.15. Observe that p(x) = x3 − 2 is 2-Eisenstein and hence irreducible in Q[x].

Example 3.2.16. Observe that p(x) = x3 − 9x+ 3 is 3-Eisenstein and hence irreducible in Q[x].

One other technique for demonstrating the irreducibility of a polynomial with integer coefficients

is the following so-called reduction modulo p for a prime number p.

Proposition 3.2.17 (Reduction Modulo p). Consider any polynomial q(x) in Z[x]. If there exists

a prime number p that does not divide the leading coefficient of q(x) such that the image of q(x)

modulo p cannot be written as the product of two non-constant polynomials in (Z/pZ)[x], then q(x)
cannot be written as the product of two non-constant polynomials in Z[x]. Consequently, if q(x) is

a primitive polynomial in Z[x], then q(x) is irreducible in Z[x], hence q(x) is irreducible in Q[x].

Proof. Consider any prime number p that does not divide the leading coefficient of q(x) such that

the image of q(x) modulo p cannot be written as the product of two non-constant polynomials in

(Z/pZ)[x]. On the contrary, we will assume that q(x) = r(x)s(x) for some non-constant polynomials

r(x) and s(x) in Z[x]. By assumption that p does not divide the leading coefficient of q(x), it

follows that neither the leading coefficient of r(x) nor the leading coefficient of s(x) is divisible

by p: indeed, because Z[x] is a domain by Proposition 3.1.4, the leading coefficient of q(x) is the

product of the leading coefficient of r(x) and the leading coefficient of s(x). Consequently, the
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degree of r(x) (mod p) is the degree of r(x), and the degree of s(x) (mod p) is the degree of s(x).

Particularly, the polynomials r(x) (mod p) and s(x) (mod p) are non-constant, and their product is

q(x) (mod p) — a contradiction. We conclude that such a factorization of q(x) is not possible.

Example 3.2.18. Consider the polynomial q(x) = 7x3+6x2+4x+4.We note that gcd(7, 6, 4) = 1,

hence q(x) is a primitive polynomial in Z[x]. Employing the technique of reduction modulo p = 5,

by Proposition 3.2.17, in order to prove that q(x) is irreducible in Q[x], it suffices to note that

q(x) admits no roots modulo 5: indeed, q(0) = 4, q(1) = 21 ≡ 1 (mod 5), q(2) = 92 ≡ 2 (mod 5),

q(3) = 259 ≡ 4 (mod 5), and q(4) = 564 ≡ 4 (mod 5) are nonzero modulo 5.

Last, we turn our attention to the irreducibility of polynomials in R[x]. Our first result toward

this end uses calculus to vastly reduce the types of possible irreducible polynomials in R[x].

Proposition 3.2.19. Every real polynomial of odd degree admits a real root.

Proof. Consider any real polynomial p(x) of odd degree. We may view p(x) as a continuous real

function via the unital ring homomorphism R[x] → F (R,R) that sends p(x) to the polynomial

function p(x). Considering that limx→−∞ p(x) and limx→∞ p(x) are infinite of opposite sign, by the

Intermediate Value Theorem, there exists a real number α such that p(α) = 0, as desired.

Consequently, every real polynomial of odd degree can be written as a product of a real poly-

nomial of even degree and a real linear polynomial, so it is natural to seek to understand real

polynomials of even degree. Quadratic polynomials that admit one real root must admit two real

roots by the Factor Theorem, hence it suffices to note by the Quadratic Formula that a quadratic

polynomial ax2 + bx+ c is reducible if and only if its discriminant b2 − 4ac is non-negative. Put

another way, the following holds for real quadratic polynomials. (We assume that a > 0.)

Proposition 3.2.20. Every real polynomial ax2 + bx+ c is irreducible if and only if b2 − 4ac < 0.

We conclude this section by demonstrating that every irreducible real polynomial is either a real

linear polynomial or a real quadratic polynomial whose discriminant is negative. Even more, we

show that every real polynomial is the product of real linear and irreducible quadratic polynomials.

Theorem 3.2.21. Consider the commutative unital ring R[x] of real univariate polynomials in x.

1.) If p(x) is an irreducible real polynomial, then either p(x) is a real linear polynomial or p(x)

is a real quadratic polynomial whose discriminant is negative.

2.) Every real polynomial is a product of real linear and irreducible quadratic polynomials.

Proof. Every nonzero real polynomial is primitive because every nonzero element of R is a unit,

hence in order to deduce the irreducibility of a real polynomial, it suffices to prove that the real

polynomial does not factor as a product of two non-constant polynomials. Constant polynomials are

never irreducible by definition, hence we may restrict our attention to polynomials of positive degree.

Linear polynomials are always irreducible because a linear polynomial cannot be written as a product

of two non-constant polynomials. Continuing our role call of real polynomials, by Proposition 3.2.20,

real quadratic polynomials with negative discriminant are irreducible. Conversely, by Proposition

3.2.19, real polynomials of odd degree exceeding one are not irreducible. We are therefore left to deal
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only with real polynomials of even degree exceeding two. By the Fundamental Theorem of Algebra,

every real polynomial p(x) of degree 2k admits exactly 2k complex roots. Consider a complex root

z = a + bi of p(x). By Example 2.1.20, complex conjugation distributes across complex addition

and complex multiplication, hence p(a− bi) is the complex conjugate of p(a+ bi); the latter is zero

by assumption, hence z = a− bi is a root of p(x). By the Factor Theorem, we conclude that

p(x) = (x− z)(x− z)q(x) = (x2 − zx− zx+ zz)q(x) = (x2 − 2ax+ a2 + b2)q(x)

for some polynomial q(x) in C[x] of degree 2k − 2. We claim that q(x) has real coefficients; if this

holds, then by the Principle of Ordinary Induction applied to the real polynomial q(x) of even

degree, we may conclude the desired result that p(x) is a product of real quadratic polynomials.

Considering p(x) and x2− 2ax+a2+ b2 as real polynomials, the Polynomial Division Algorithm

yields unique real polynomials q0(x) and r(x) such that p(x) = (x2− 2ax+ a2+ b2)q0(x)+ r(x) and

either r(x) is the zero polynomial or 0 ≤ deg(r) ≤ 1. Considering p(x) and x2 − 2ax + a2 + b2 as

complex polynomials, the uniqueness of the Polynomial Division Algorithm applied to the identity

p(x) = (x2 − 2ax+ a2 + b2)q(x) implies that r(x) = 0 and q(x) = q0(x) is a real polynomial.

3.3 Roots of Polynomials and Field Extensions

Classically, the development of field theory began as early as the sixteenth century with the devel-

opment of the Quadratic Formula, the Cubic Formula, and the Quartic Formula. Culminating in

one of the landmark results of the field, the eponymous works of the precocious French mathemati-

cian Évariste Galois in the early 1800s inspired the development of Galois Theory that is still used

extensively in contemporary mathematics. Particularly, it is a consequence of the theory of Galois

that there is not (in general) a formula to produce the roots of real polynomials of degree greater

than or equal to five. We begin our studies in field theory with a view toward Galois Theory.

We will concern ourselves throughout this chapter with the univariate polynomial ring k[x] for

some field k. Like in Section 3.2, we will typically deal with the field of rational numbers Q, the field
of real numbers R, the field of complex numbers C, or the finite fields Z/pZ for some prime number

p. We remind the reader that the elements of k[x] are polynomials p(x) = anx
n + · · · + a1x + a0

with coefficients an, . . . , a1, a0 that are elements of the field k. Every nonzero element of a field is a

unit, hence for any polynomial p(x) = anx
n + · · ·+ a1x+ a0 such that an is nonzero, we have that

q(x) = a−1
n p(x) = xn + a−1

n an−1x
n−1 + · · · + a−1

n a1x + a−1
n a0 is a monic polynomial; therefore, we

may restrict our attention to monic polynomials in k[x]. We say that an element α ∈ k is a root of

p(x) = xn + an−1x
n−1 + · · · + a1x + a0 if and only if p(α) = αn + an−1α

n−1 + · · · + a1α + a0 = 0k.

Unfortunately, as we have seen, there exist fields that admit polynomials with no roots in the field.

Explicitly, the polynomial x2 + 1 in R[x] admits no root in R: indeed, we have that α is a root of

x2 + 1 if and only if α2 + 1 = 0 if and only if α2 = −1 if and only if α = ±
√
−1, and this is not

a real number. Consequently, it is in this sense that the field R of real numbers is deficient, and

we set out to look for the smallest field k that contains R and all roots of polynomials in R[x]. We

know already from Theorem 3.2.21 and the Quadratic Formula that the only polynomials in R[x]
that do not admit roots in R are the quadratic polynomials ax2 + bx+ c for which the discriminant

b2 − 4ac < 0, hence it seems that C is the smallest field containing R and all roots of polynomials
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in R[x]. Our aim throughout this section is to verify this intuition and use it to investigate similar

situations over the field of rational numbers Q and the finite field Z/pZ for a prime number p.

Given any monic polynomial p(x) = xn + an−1x
n−1 + · · · + a1x + a0 in k[x], recall that the

principal ideal (p(x)) = {p(x)q(x) : q(x) ∈ k[x]} generated by p(x) consists of all polynomials in

k[x] that are divisible by p(x). Even more, the quotient ring k[x]/(p(x)) is a commutative unital

ring for which the left coset x̄ = x+ (p(x)) of the indeterminate x in (p(x)) satisfies that

p(x̄) + (p(x)) = x̄n + an−1x̄
n−1 + · · ·+ a1x̄+ a0 + (p(x))

= [x+ (p(x))]n + an−1[x+ (p(x))]n−1 + · · ·+ a1[x+ (p(x))] + a0 + (p(x))

= [xn + (p(x))] + an−1[x
n−1 + (p(x))] + · · ·+ a1[x+ (p(x))] + a0 + (p(x))

= xn + an−1x
n−1 + · · ·+ a1x+ a0 + (p(x))

= p(x) + (p(x))

= 0k + (p(x)),

hence x̄ is a root of p(x) in k[x]/(p(x)). Considering that the inclusion k → k[x]/(p(x)) that sends

an element α of k to the left coset α + (p(x)) of k[x]/(p(x)) is a unital ring homomorphism, we

may identify the field k with a unital subring of k[x]/(p(x)) by the First Isomorphism Theorem for

Rngs. We have found a commutative unital ring that contains (an isomorphic copy of) k and a root

of p(x). Our next proposition gives a sufficient condition under which k[x]/p(x) is a field.

Proposition 3.3.1. Consider the univariate polynomial ring k[x] over any field k. If p(x) is any

monic irreducible polynomial in k[x], then k[x]/(p(x)) is a field that contains k and a root of p(x).

Proof. By Proposition ??, it suffices to prove that (p(x)) is a maximal ideal of k[x]. Given any

proper ideal I of k[x] such that I ⊇ (p(x)), we must demonstrate that I ⊆ (p(x)). By assumption

that I is a proper ideal of k[x], the monic constant polynomial 1R does not lie in I. Consequently, the

degrees of the nonzero monic polynomials of I form a nonempty subset of positive integers, hence

by the Well-Ordering Principle, there exists a nonzero monic polynomial f(x) ∈ I of least positive

degree. Even more, by the Polynomial Division Algorithm, there exist unique polynomials q(x) and

r(x) in k[x] such that p(x) = f(x)q(x) + r(x) and either r(x) = 0k or 0 ≤ deg(r) ≤ deg(f) − 1.

Considering that p(x) and −f(x)q(x) both lie in I, their sum r(x) = p(x)− f(x)q(x) lies in I. We

note that if the leading coefficient an of r(x) were nonzero, then we could find a monic polynomial

a−1
n r(x) of strictly lesser degree than f(x) — a contradiction. We conclude therefore that r(x) = 0k

so that p(x) = f(x)q(x). By assumption that p(x) is irreducible, it must be the case that q(x) is

a nonzero constant, hence the degree of p(x) and f(x) are the same, i.e., we find that p(x) is a

monic polynomial of least positive degree in I. Given any polynomial g(x) ∈ I, once again, by the

Polynomial Division Algorithm, there exist unique polynomials Q(x) and R(x) in k[x] such that

g(x) = p(x)Q(x) + R(x) and R(x) = 0k or 0 ≤ deg(R) ≤ deg(p) − 1. Like before, the polynomial
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−p(x)Q(x) lies in I, hence the sum R(x) = g(x)− p(x)Q(x) lies in I. But this forces R(x) = 0k by

the same rationale as before. We conclude that g(x) = p(x)Q(x) ∈ (p(x)) so that I ⊆ (p(x)).

By the paragraph preceding this proposition, k[x]/(p(x)) contains k and a root of p(x).

Given any field k, we refer to a field F for which there exists an injective unital ring homomor-

phism k → F as an extension field of k. Consequently, Proposition 3.3.1 states that if p(x) is an

irreducible polynomial in k[x], then k[x]/(p(x)) is an extension field of k that contains a root of

p(x). Considering its importance, we bear out the details of the following theorem of Kronecker.

Theorem 3.3.2 (Fundamental Theorem of Field Theory). Every non-constant univariate polyno-

mial p(x) over a field k induces an extension field F of k and an element α ∈ F such that p(α) = 0.

Proof. Every monic irreducible factor q(x) of p(x) induces a field k[x]/(q(x)) in which q(x) admits

the root α = x + (q(x)) by the paragraph preceding Proposition 3.3.1 and the proposition itself.

Considering that every root of q(x) is a root of p(x), the existence of the field F and the element

α ∈ F such that p(α) = 0F are established; in order to demonstrate that F is an extension field

of k, it suffices to find an injective unital ring homomorphism φ : k → F. Like we mentioned

previously, the inclusion φ(a) = a + (q(x)) is clearly a unital ring homomorphism; it is injective

because a+(q(x)) = 0k +(q(x)) if and only if a = q(x)f(x) if and only if a = 0k and f(x) = 0k.

Example 3.3.3. Consider the monic polynomial x2−2 in Q[x]. By the Quadratic Formula, the only

roots of x2− 2 are ±
√
2. Considering that

√
2 is not rational, it follows that x2− 2 is an irreducible

monic polynomial in Q[x], hence Q[x]/(x2−2) is an extension field of Q that contains a root of x2−2.

We will prove that the commutative unital ring Q(
√
2) = {a + b

√
2 | a, b ∈ Q} defined in Exercise

2.7.21 and the field Q[x]/(x2−2) are isomorphic. Consider the function φ : Q[x]/(x2−2) → Q(
√
2)

defined by φ(a + bx + (x2 − 2)) = a + b
√
2. Clearly, it follows that φ is surjective. Given any pair

of elements a + b
√
2 and c + d

√
2 of Q(

√
2) such that a + b

√
2 = c + d

√
2, we must have that

a− c = (d− b)
√
2. Consequently, if d− b were nonzero, then we would find that

√
2 is rational — a

contradiction. We conclude that b = d so that a = c and a+ bx+ (x2 − 2) = c+ dx+ (x2 − 2), i.e.,

φ is injective. Last, it is straightforward to verify that φ is a unital ring homomorphism: indeed, it

is a group homomorphism because (a+ c) + (b+ d)x+ (x2 − 2) = (a+ bx) + (c+ dx) + (x2 − 2) and

φ((a+ c) + (b+ d)x+ (x2 − 2)) = (a+ c) + (b+ d)
√
2 = (a+ b

√
2) + (c+ d

√
2), and we have that

(a+ bx+ (x2 − 2))(c+ dx+ (x2 − 2)) = ac+ (ad+ bc)x+ bdx2 + (x2 − 2)

= (ac+ 2bd) + (ad+ bc)x+ bd(x2 − 2) + (x2 − 2)

= (ac+ 2bd) + (ad+ bc)x+ (x2 − 2)

gives φ(a + bx + (x2 − 2))(c + dx + (x2 − 2)) = (ac + 2bd) + (ad + bc)
√
2 = (a + b

√
2)(c + d

√
2).

Explicitly, we have that φ(x+ (x2 − 2)) =
√
2, hence we obtain an algebraic description of

√
2. We

note that in Q(
√
2)[x], we have a complete factorization x2 − 2 = (x+

√
2)(x−

√
2).

Example 3.3.4. Consider the monic polynomial x2+1 in R[x]. We are well aware by now that the

only roots of x2+1 are the non-real complex numbers ±
√
−1. Consequently, x2+1 is an irreducible

monic polynomial in R[x], hence R[x]/(x2+1) is an extension field of R that contains both roots of

x2 + 1. By Exercise 2.7.76, R[x]/(x2 + 1) and C are isomorphic via the unital ring homomorphism

φ : R[x]/(x2 + 1) → C defined by φ(a+ bx+ (x2 + 1)) = a+ bi. We may therefore identify the left
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coset x+ (x2 + 1) of R[x]/(x2 + 1) with the complex number i =
√
−1 to obtain a purely algebraic

description of i. Even more, as a polynomial in C[x], we have that x2 + 1 = (x− i)(x+ i).

Example 3.3.5. Observe that 02 + 0 + 1 = 1 and 12 + 1 + 1 = 3 ≡ 1 (mod 2), hence the monic

quadratic polynomial x2 + x+1 does not admit a root in (Z/2Z)[x]. Consequently, x2 + x+1 is an

irreducible monic polynomial in (Z/2Z)[x] so that (Z/2Z)[x]/(x2+x+1) is an extension field of Z/2Z
that contains a root of x2 + x+1. By the Polynomial Division Algorithm, every polynomial p(x) in

(Z/2Z)[x] can be written uniquely as p(x) = (x2+x+1)q(x) for some unique polynomials q(x) and

r(x) = ax+ b in (Z/2Z)[x]. Considering that Z/2Z has two elements, there are simultaneously two

choices for each of the elements a, b ∈ Z/2Z.We conclude that (Z/2Z)[x]/(x2+x+1) is a field with

22 elements 0 + (x2 + x+ 1), 1 + (x2 + x+ 1), x+ (x2 + x+ 1), and x+ 1+ (x2 + x+ 1). Like in the

previous examples, there exists an isomorphism φ : (Z/2Z)[x]/(x2+x+1) → (Z/2Z)(α) defined by

φ(a+ bx+ (x2 + x+ 1)) = a+ bα for any root α of x2 + x+ 1, hence (Z/2Z)(α) is a field with four

elements 0, 1, α, and α+1. We note that α2 = α2 +α+1+α+1 = α+1 because 2 and α2 +α+1

are both zero in (Z/2Z)(α). Even more, we have that α(α + 1) = α2 + α = α2 + α + 1 + 1 = 1.

3.4 Simple Extensions

We will continue to assume that k is a field. Given any field F such that there exists an injective

unital ring homomorphism k → F, we say that F is an extension field of k; the injective unital ring

homomorphism k → F is itself called the field extension of F over k. Often, in the literature, the

two concepts are conflated; however, we will try to keep them separate for the sake of clarity.

By the Fundamental Theorem of Field Theory, every non-constant polynomial in k[x] induces

an extension field F of k in which there lies a root α of p(x), i.e., we can always find a field F and

an element α ∈ F such that p(α) = 0k. Conversely, given any extension field F over k, an element

α ∈ F is algebraic over k if there exists a nonzero polynomial p(x) in k[x] such that p(α) = 0F .

Example 3.4.1. Considering that
√
2 is a root of the nonzero polynomial x2− 2 in Q[x], it follows

that the real number
√
2 is algebraic over Q. Likewise, the real number −

√
2 is algebraic over Q.

Example 3.4.2. Observe that the complex number i =
√
−1 is a root of the polynomial x2 + 1 in

Q[x], hence i is algebraic over Q. Likewise, the complex number −i is algebraic over Q.

Example 3.4.3. We will demonstrate that α =
√
2 +

√
3 is algebraic over Q.

α2 = 2 +
√
3

α2 − 2 =
√
3

(α2 − 2)2 = 3

α4 − 4α2 + 4 = 3

α4 − 4α2 + 1 = 0

Consequently, we find that α is a root of the rational polynomial x4 − 4x2 + 1.

Example 3.4.4. Elements of an extension field F of k need not be algebraic: indeed, it is a non-

trivial fact that the real numbers π and e are not algebraic over Q. Put another way, there is no

nonzero polynomial p(x) in Q[x] for which p(π) = 0 or p(e) = 0.We refer to the real numbers π and
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e as transcendental. Generally, an element α ∈ F is transcendental over k if α is not the root of

any nonzero polynomial in k[x], i.e., the evaluation homomorphism φα : k[x] → F is injective.

We will say that a field extension k → F is an algebraic extension of k if every element of

F is algebraic over k. Given any algebraic elements α1, . . . , αn of F over k, we write k(α1, . . . , αn)

to denote the smallest extension field of k lying in F that contains k and the elements α1, . . . , αn.

Explicitly, if α is any algebraic element of F over k, then k(α) is called a simple extension of k.

Generally, an extension of the form k(α1, . . . , αn) is called a finitely generated extension of k.

Example 3.4.5. By Example 3.4.1, we have that Q(
√
2) is a simple extension of Q.

Example 3.4.6. By Example 3.4.2, we have that Q(i) is a simple extension of Q.

Example 3.4.7. We will demonstrate that the field (Z/2Z)(α) of Example 3.3.5 is an algebraic

extension of Z/2Z. Explicitly, we have that (Z/2Z)(α) = {0, 1, α, α+ 1} such that α2 + α+ 1 = 0.

Certainly, the elements 0 and 1 are algebraic over Z/2Z because they are the respective roots the

polynomials x and x − 1 in (Z/2Z)[x]. Even more, by construction, we have that α is the root of

x2 + x + 1 in (Z/2Z)[x], so it suffices to prove that α + 1 is the root of a nonzero polynomial in

(Z/2Z)[x].We note that (α+1)2 = α2+2α+1 = α2+1 so that (α+1)2+(α+1) = (α2+α+1)+1

and (α+1)2+(α+1)+1 = (α2+α+1)+1+1 = 0. Consequently, α+1 is a root of x2+x+1. We

note that the complete factorization of x2+x+1 in (Z/2Z)(α)[x] is x2+x+1 = (x+α)(x+α+1).

Generally, we have not yet discussed a description of the elements of a simple extension k(α), so

we turn our attention to this matter next. We seek to leverage the Fundamental Theorem of Field

Theory and the Proposition 3.3.1 that implies it. Before this, we need the following lemma.

Lemma 3.4.8. Given any algebraic element α of any extension field F of any field k, there exists a

unique monic irreducible polynomial µα(x) in k[x] of least positive degree that has α as a root. We

refer to the unique monic irreducible polynomial µα(x) as the minimal polynomial of α over k.

Particularly, for any polynomial p(x) in k[x] such that p(α) = 0k, we have that µα(x) divides p(x).

Proof. Consider the evaluation homomorphism φα : k[x] → F at α defined by φα(p(x)) = p(α).

By hypothesis that α is algebraic over k, there exists a nonzero polynomial p(x) in k[x] such that

p(α) = 0k, i.e., the kernel of φα is a nonzero proper ideal of k[x]. By the Well-Ordering Principle

applied to the degrees of the nonzero polynomials in kerφα, there exists a polynomial p(x) in kerφα

of least positive degree. We claim that p(x) is divides every polynomial in the kernel of φα, i.e.,

we claim that kerφα = (p(x)). By the Polynomial Division Algorithm, for any polynomial f(x) in

kerφα, there exist unique polynomials q(x) and r(x) in k[x] such that f(x) = p(x)q(x) + r(x) and

r(x) is either zero or the degree of r(x) is a non-negative integer that is strictly less than the degree

of p(x). Considering that r(x) = f(x)− p(x)q(x) lies in kerφα, we must have that r(x) is the zero

polynomial; otherwise, we would have found a nonzero polynomial in kerφα of strictly lesser degree

than p(x) — a contradiction. We conclude that p(x) divides every polynomial in kerφα. Even more,

we claim that p(x) is irreducible: indeed, if we write p(x) = q(x)r(x) for some polynomials q(x) and

r(x) in k[x], it follows that 0 = p(α) = q(α)r(α) in the field F, hence the Zero Product Property

yields that either q(α) = 0k or r(α) = 0k. Certainly, either q(x) or r(x) must have the same degree

as p(x); otherwise, we would have found a nonzero polynomial in kerφα of strictly lesser degree

than p(x) — a contradiction. We conclude that p(x) is irreducible. Even more, if a is the leading
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coefficient of p(x), then µα(x) = a−1p(x) is a monic irreducible polynomial of least positive degree

that has α as a root; it is unique because it divides any polynomial with α as a root.

Corollary 3.4.9. Given any algebraic element α of any extension field F of any field k, if p(x) is

a monic irreducible polynomial in k[x] and p(α) = 0k, we must have that p(x) = µα(x).

Proof. By Lemma 3.4.8, we must have that p(x) = µα(x)q(x) for some polynomial q(x) in k[x].

Considering that p(x) is irreducible, the degree of µα(x) must coincide with the degree of p(x).

Even more, p(x) and µα(x) are monic, hence we must have that q(x) = 1k so that p(x) = µα(x).

Example 3.4.10. We note that x2 − 2 is the minimal polynomial of
√
2 over Q because it is the

unique monic irreducible polynomial of least positive degree that has
√
2 as a root: indeed, there

are no linear polynomials in Q[x] with
√
2 as a root because

√
2 is not a rational number.

Example 3.4.11. We note that x2 + 1 is the minimal polynomial of i =
√
−1 over Q because it is

the unique monic irreducible polynomial of least positive degree that has i as a root: indeed, there

are no linear polynomials in Q[x] with i as a root because i is not a rational number.

Example 3.4.12. We have seen already in Example 3.4.3 that x4 − 4x2 + 1 is a monic polynomial

of Q[x] that has
√

2 +
√
3 as a root; we will prove that it is the minimal polynomial of

√
2 +

√
3

over Q. By the Rational Roots Theorem, the only possible rational roots of x4 − 4x2 + 1 are 1 and

−1; it is not difficult to check that neither of them is actually a root. Consequently, we may assume

that x4−4x2+1 = (x2+ax+ b)(x2+ cx+d) for some integers a, b, c, and d. Expanding the product

and comparing the coefficients of the monomials x3, x2, x, and 1 yields the following.

a+ c = 0 ad+ bc = 0

ac+ b+ d = −4 bd = 1

We must have that b = d = ±1. Given that b = d = 1, the equations a+ c = 0 and ac+ b+ d = −4

yield that −a2 = −6 so that a2 = 6 — a contradiction. Likewise, if b = d = −1, then we have that

−a2 = −2 so that a2 = 2 — a contradiction. We conclude that x4 − 4x2 + 1 is irreducible in Q[x].

Given any algebraic element α of any extension field F of any field k, we refer to the degree of

the minimal polynomial µα(x) of α over k as the degree of the simple extension k(α) over k (or as

the degree of α over k) and we write [k(α) : k] to denote this common degree.

Example 3.4.13. Example 3.4.10 illustrates that [Q(
√
2) : Q] = 2.

Example 3.4.14. Example 3.4.11 illustrates that [Q(i) : Q] = 2.

Example 3.4.15. Example 3.4.12 illustrates that [Q(
√
2 +

√
3) : Q] = 4.

We are now in a position to explicitly describe the elements of the simple extension k(α).

Proposition 3.4.16. Consider any algebraic element α of any extension field F of any field k.

1.) We have that k(α) ∼= k[x]/(µα(x)) for the minimal polynomial µα(x) of α.

2.) We have that k(α) is a k-vector space.

3.) We have that {1k, α, α2, . . . , αn−1} is a k-vector space basis for k(α) if the degree of µα(x) is

n. Put another way, the degree of the simple extension k(α) over k is n.
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Proof. (1.) By Lemma 3.4.8 and the First Isomorphism Theorem for Rngs, the evaluation homomor-

phism φα : k[x] → F at α induces a unital ring isomorphism k[x]/(µα(x)) ∼= φ(k[x]). Considering

that k(α) is a field that contains α, it must hold that k(α) contains the powers 1k, α, α
2, etc. Even

more, k(α) contains k and must be closed under addition and multiplication, hence k(α) contains

every polynomial of the form anα
n + · · ·+ a1α + a0. Consequently, it holds that k(α) contains the

field φ(k[x]). By definition, k(α) is the smallest field lying in F that contains k and α, hence k(α)

must be equal to the field φ(k[x]) because φ(k[x]) is a field lying in F that contains k and α.

(2.) Every element of k(α) is of the form anα
n + · · ·+ a1α+ a0 for some elements an, . . . , a1, a0

of k. Consequently, we may realize k(α) as the collection of polynomials in α with coefficients in k.

Considering that these polynomials form a k-vector space, so must the field k(α).

(3.) We have already seen that every element of k(α) is a polynomial in α with coefficients in k,

hence it suffices to prove that {1k, α, α2, . . . , αn−1} span k(α) as a k-vector space and are linearly

independent over k. By the Polynomial Division Algorithm, every polynomial p(x) in k[x] can be

written as p(x) = µα(x)q(x)+ r(x) for some polynomials q(x) and r(x) = an−1x
n−1+ · · ·+a1x+a0.

Consequently, we find that p(α) = µα(α)q(α) + r(α) = r(α) = an−1α
n−1 + · · ·+ a1α1 + a0 because

µα(α) = 0k by definition, hence every element of k(α) can be written as a k-linear combination of

the elements 1k, α, α
2, . . . , αn−1. Even more, these elements of k(α) are linearly independent over k:

indeed, any expression of linear dependence an−1α
n−1+· · ·+a2α2+a1α+a0 = 0k induces a polynomial

p(x) = an−1x
n−1 + · · · + a2x

2 + a1x + a0 of k[x] that has α as a root. By Lemma 3.4.8, we must

have that µα(x) divides p(x). Considering that the degree of p(x) is strictly lesser than the degree of

µα(x), we must have that p(x) is the zero polynomial so that a0 = a1 = a2 = · · · = an−1 = 0k.

Example 3.4.17. Considering that x2 − 2 is the minimal polynomial of
√
2 over Q, it follows by

the previous proposition that the simple extension Q(
√
2) is a Q-vector space of dimension two

with a basis of {1,
√
2}. Consequently, every element of Q(

√
2) can be written as a+ b

√
2 for some

rational numbers a and b. We note that this justifies the description of Q(
√
2) in Exercise 2.7.21.

Example 3.4.18. We have that Q(i) is a Q-vector space of dimension two with a basis of {1, i}
because the minimal polynomial of i over Q is x2 + 1. We conclude that Q(i) = {a+ bi | a, b ∈ Q}.

Example 3.4.19. We have seen that x4 − 4x2 + 1 is the minimal polynomial of
√

2 +
√
3 over Q,

hence Q(
√

2 +
√
3) is a Q-vector space with a basis {1,

√
2 +

√
3, (
√

2 +
√
3)2, (

√
2 +

√
3)3}.

3.5 Finite Extensions

Consider any extension field F of any field k. We may view F as a k-vector space by virtue of the

fact that F is an additive abelian group by definition with the additional property that for any

element α ∈ F and any element a ∈ k, we have that aα lies in F because k can be identified (by the

First Isomorphism Theorem for Rngs) with a subfield of F. Even more, we say that F is a finite

extension of k if F is a finite-dimensional k-vector space, i.e., F admits a finite basis over k.

Every extension field we have encountered thus far in this chapter has been a finite extension.

Even more, these extensions have all been algebraic, and every finite extension is algebraic.

Proposition 3.5.1. Every finite extension of fields is algebraic, i.e., if k → F is a field extension

such that F is a finite-dimensional k-vector space, then every element of F is algebraic over k.
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Proof. Considering that F is a finite-dimensional k-vector space, there exists an integer n ≥ 0 such

that for any element α ∈ F, the powers 1, α, α2, . . . , αn are linearly dependent over k. Consequently,

there exist elements a0, a1, a2, . . . , an ∈ k not all of which are zero such that we obtain a relation of

linear dependence anα
n + · · · + a2α

2 + a1α + a0 = 0F over k. We conclude that α is a root of the

nonzero polynomial anx
n + · · ·+ a2x

2 + a1x+ a0 in k[x], hence α is algebraic over k.

Corollary 3.5.2. Given any algebraic element α of any extension field F of any field k, we have

that k(α) is an algebraic extension of k. Explicitly, every element of k(α) is algebraic over k.

Proof. By Proposition 3.4.16, it follows that k(α) is a finite-dimensional k-vector space.

Caution: the converse of Proposition 3.5.1 does not hold: indeed, we will see in the next section

that the collection of real numbers that are algebraic over Q forms an algebraic extension of Q that

is an infinite-dimensional Q-vector space (for reasons that are beyond the scope of these notes).

Every simple extension k(α) over k is a finite-dimensional k-vector space of dimension [k(α) : k]

equal to the degree of the minimal polynomial of α over k by Proposition 3.4.16, hence every simple

extension is itself a finite extension. Conventionally, we adopt the notation [F : k] to denote the

k-vector space dimension of any finite extension F over k.We demonstrate next the crucial fact that

finiteness of a field extension is transitive and the dimension of a finite extension is multiplicative.

Proposition 3.5.3. Given any finite extension of a field F over a field k and any finite extension

of a field E over F, we have that E is a finite extension over k such that [E : k] = [E : F ][F : k].

Proof. Each of the claims will be achieved simultaneously by demonstrating that if α1, . . . , αm form

a k-vector space basis of F and β1, . . . , βn form an F -vector space basis of E over F, then their

products αiβj for each pair of integers 1 ≤ i ≤ m and 1 ≤ j ≤ n form a k-vector space basis of E over

k. Every element of E can be written as a1β1+· · ·+anβn for some unique elements a1, . . . , an ∈ F by

assumption that E is a finite-dimensional F -vector space. Considering that F is a finite-dimensional

k-vector space, each of the elements ai of F can be written as ai = b1iα1 + · · · + bmiαm for some

unique elements b1i, . . . , bmi ∈ k. Combined, these observations demonstrate that every element of

E is of the form (b11α1 + · · ·+ bm1αm)β1 + · · ·+ (b1nα1 + · · ·+ bmnαn)βn. Expanding the products

and rearranging the summands gives a k-linear combination of the products αiβj, hence αiβj span

E as a k-vector space. Even more, they are linearly independent over k: any relation of k-linear

dependence
∑n

j=1(
∑m

i=1 aijαi)βj =
∑n

j=1

∑m
i=1 aijαiβj = 0E gives rise to a relation of k-linear

dependence
∑m

i=1 aijαi for each integer 1 ≤ j ≤ n. Considering that α1, . . . , αm form a basis of F

over k, we must have that aij = 0k for all integers 1 ≤ i ≤ m and 1 ≤ j ≤ n, as desired.

Corollary 3.5.4. Given any finite extensions Fn ⊇ Fn−1 ⊇ · · · ⊇ F2 ⊇ F1 ⊇ k, we have that

[Fn : k] = [Fn : Fn−1] · · · [F2 : F1][F1 : k].

Proof. We obtain this as a corollary to Proposition 3.5.3 by the Principle of Ordinary Induction:

we have that [Fn : k] = [Fn : Fn−1][Fn−1 : k], and the formula holds for [Fn−1 : k] by induction.

Corollary 3.5.5. Given any algebraic elements α1, . . . , αn of any extension field F of any field k,

we have that k(α1, . . . , αi) is an algebraic extension of k(α1, . . . , αi−1) for each integer 1 ≤ i ≤ n.

Consequently, every finitely generated extension by algebraic elements is an algebraic extension.
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Proof. Given any pair of algebraic elements α and β in any extension field F of k, we must first

check that k(α, β) is an extension field over k(α). By definition, we have that k(α, β) is the smallest

extension field of k lying in F that contains k and the elements α and β. Consequently, it follows

that k(α, β) contains every polynomial in α with coefficients in k, hence k(α, β) contains k(α). Even

more, because k(α, β) contains β, it must contain the smallest extension field of k(α) lying in F that

contains k(α) and β, i.e., k(α, β) contains k(α)(β). Conversely, we note that k(α)(β) contains k(α)

and β, hence it must contain k, α, and β. Considering that k(α, β) is the smallest extension field of

k lying in F that contains k and the elements α and β, we conclude that k(α)(β) contains k(α, β).

By the same rationale, it follows that k(α1, . . . , αi) = k(α1, . . . , αi−1)(αi) for each integer 1 ≤ i ≤ n,

hence every finitely generated extension by algebraic elements induces a tower of simple extensions

by algebraic elements. Each of these simple extensions is finite by Proposition 3.4.16, hence we find

that k(α1, . . . , αn) is a finite extension of k; it must be algebraic by Proposition 3.5.1.

We have thus far in this chapter only explicitly dealt with simple extensions, so it is natural to

seek to determine the structure of any algebraic extension k(α1, . . . , αn) over k. One immediate idea

is to view k(α1, . . . , αn) as a simple extension k(α1, . . . , αn−1)(αn); then, it suffices to determine the

structure of k(α1) over k, the structure of k(α1)(α2) over k(α1), etc. Combined with the following

proposition, this strategy can be used to great effect to simplify our study of finite field extensions.

Proposition 3.5.6. Consider any algebraic element α of any extension field F of any field k. Given

any element β of the simple extension k(α), the minimal polynomial µβ(x) of β in k[x], the degree

of µβ(x) in k[x] divides the degree of the minimal polynomial µα(x) in k[x].

Proof. Given any element β of the simple extension k(α), we must have that β is a polynomial in α

by Proposition 3.4.16. Even more, it follows that β is algebraic over k by Corollary 3.5.2, hence the

simple extension k(β) over k is finite by Proposition 3.4.16. We may therefore consider the minimal

polynomial µβ(x) of β over k. Every element of k(β) is a polynomial in β, and β is a polynomial in α,

hence every element of k(β) is a polynomial in α, and it follows that k(α) is an extension field of k(β).

Considering that k(α) is a finite extension of k, it must be the case that k(α) is a finite extension

of k(β) because the minimal polynomial µα(x) of α over k is divisible by the minimal polynomial of

α over k(β). We conclude that k → k(β) ⊆ k(α) is a tower of finite extensions, hence Proposition

3.5.3 yields that deg(µα) = [k(α) : k] = [k(α) : k(β)][k(β) : k] = [k(α) : k(β)] deg(µβ).

Example 3.5.7. Consider the finitely generated extension Q(
√
2, i) of Q. By Example 3.4.13, we

have that Q(
√
2) is a simple extension of degree two over Q. Considering that x2 + 1 is a monic

polynomial that does not admit a root over Q(
√
2) because i is not a real number, it follows that

x2 + 1 is the minimal polynomial of i over Q(
√
2). We conclude by Proposition 3.5.3 that Q(

√
2, i)

is a finite algebraic extension of Q of degree [Q(
√
2, i) : Q(

√
2)][Q(

√
2) : Q] = (2)(2) = 4.

Example 3.5.8. By Example 3.4.15, the simple extension Q(
√
2 +

√
3) of Q has degree four over

Q. We will establish this fact by providing an alternative to the previous proof. Considering that√
3 = (

√
2 +

√
3)2 − 2, it follows that Q(

√
2 +

√
3) is an extension field of Q(

√
3); it is a finite

extension of Q(
√
3) because Q(

√
2 +

√
3) and Q(

√
3) are both finite extensions of Q. We claim

that x2 − (2 +
√
3) is the minimal polynomial of

√
2 +

√
3 over Q(

√
3). By the Factor Theorem,

it suffices to prove that x2 − (2 +
√
3) admits no roots in Q(

√
3). On the contrary, suppose that
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a+ b
√
3 satisfies that (a2 + 3b2) + 2ab

√
3 = (a+ b

√
3)2 = 2 +

√
3 for some rational numbers a and

b. By rearranging this expression, we could write
√
3 as a rational number — a contradiction.

√
3 =

a2 + 3b2 − 2

1− 2ab

We conclude therefore that [Q(
√

2 +
√
3) : Q] = [Q(

√
2 +

√
3) : Q(

√
3)][Q(

√
3) : Q] = (2)(2) = 4.

Example 3.5.9. We note that the method of the previous example can be applied more generally

to determine the degree of finitely generated extensions by algebraic elements. Consider the finite

algebraic extension Q(
√
3,
√
5) of Q. By Exercise 3.7.25, we have that Q(

√
3) has degree two over Q.

Consequently, we may turn our attention to the extension field Q(
√
3,
√
5) of Q(

√
3).We claim that

x2 − 5 is the minimal polynomial of
√
5 over Q(

√
3). Like before, we may assume on the contrary

that there exist rational numbers a and b such that (a2 + 3b2) + 2ab
√
3 = (a + b

√
3)2 = 5, and in

the same way as the previous example, we arrive at a contradiction that
√
3 is a rational number.

√
3 =

5− a2 − 3b2

2ab

We conclude by the Factor Theorem that x2 − 5 is irreducible over Q(
√
3), hence we have that

[Q(
√
3,
√
5) : Q] = [Q(

√
3,
√
5) : Q(

√
3)][Q(

√
3) : Q] = (2)(2) = 4 by Proposition 3.5.3.

Consider the element
√
3+

√
5 of Q(

√
3,
√
5).We note that Q(

√
3+

√
5) lies in Q(

√
3,
√
5), hence

the degree of Q(
√
3 +

√
5) divides the degree of Q(

√
3,
√
5) by Proposition 3.5.6. Considering that

Q(
√
3,
√
5) is a finite extension of Q(

√
3 +

√
5) by the proof of the aforementioned proposition, it

follows from general considerations in linear algebra that Q(
√
3 +

√
5) = Q(

√
3,
√
5) if and only if

[Q(
√
3 +

√
5) : Q] = [Q(

√
3,
√
5) : Q] = 4. We know by Corollary 3.5.1 that

√
3 +

√
5 is algebraic

over Q, hence we may find a candidate for the minimal polynomial of
√
3 +

√
5.

α =
√
3 +

√
5

α2 = 8 + 2
√
15

α2 − 8 = 2
√
15

(α2 − 8)2 = 60

α4 − 16α2 + 4 = 0

Consequently, we have found a monic polynomial x4−16x2+4 in Q[x] for which
√
3+

√
5 is a root.

By the Rational Roots Theorem, the only possible rational roots of x4 − 16x2 + 4 are ±1, ±2, and

±4. Check that none of these is a root, hence x4 − 16x2 + 4 does not admit any linear factors by

the Factor Theorem. Even more, by Gauss’s Lemma, it suffices to prove that x4 − 16x2 + 4 does

not factor as a product of quadratics x4 − 16x2 + 4 = (x2 + ax+ b)(x2 + cx+ d).

a+ c = 0 ad+ bc = 0

ac+ b+ d = −16 bd = 4

Considering that bd = 4, it follows that b = d = ±2 so that −16 − 2b = −16 − b − d = ac = −a2
or a2 = 16+ 2b by the first and second equations in the left-hand column. Given that b = d = 2, it

follows that a2 = 20 — a contradiction to the result of Exercise 3.7.25. Conversely, if b = d = −2,

then a2 = 12 — a contradiction. We conclude therefore that x4 − 16x2 + 4 is irreducible over Q,
hence we have that [Q(

√
3 +

√
5) : Q] = 4 so that Q(

√
3,
√
5) = Q(

√
3 +

√
5) is simple.
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We conclude this section with an important result that completely characterizes finite extensions.

Theorem 3.5.10. Given any extension field F of any field k, the following conditions are equivalent.

(i.) We have that F is a finite extension of k, i.e., F is finite-dimensional as a k-vector space.

(ii.) We have that F is a finitely generated algebraic extension of k, i.e., there exist α1, . . . , αn ∈ F

such that F = k(α1, . . . , αn) and αi is algebraic over k for each integer 1 ≤ i ≤ n.

(iii.) We have that F is obtained from a finite sequence of simple algebraic extensions over k, i.e.,

there exist elements α1, . . . , αn such that F = k(α1, . . . , αn) and for each integer 1 ≤ i ≤ n,

we have that k(α1, . . . , αi) = k(α1, . . . , αi−1)(αi) is an algebraic extension of k(α1, . . . , αi−1).

Proof. Essentially, the proof of this fact follows from a careful recollection of the observations of

this section. We note that if F is a finite extension of k, then we may find a basis α1, . . . , αn ∈ F of

F as a k-vector space. Every element of F can be written as a k-linear combination of the elements

α1, . . . , αn, hence F is contained in k(α1, . . . , αn). Considering that k(α1, . . . , αn) is by definition

the smallest extension field of k lying in F that contains k and the elements α1, . . . , αn, we conclude

that F = k(α1, . . . , αn). By Proposition 3.5.1, we must have that F is algebraic over k.

We will assume next that F admits elements α1, . . . , αn such that F = k(α1, . . . , αn) and αi is

algebraic over k for each integer 1 ≤ i ≤ n. Corollary 3.5.5 ensures the desired result.

Last, we will assume that there exist elements α1, . . . , αn such that F = k(α1, . . . , αn) and for

each integer 1 ≤ i ≤ n, we have that k(α1, . . . , αi) is an algebraic extension of k(α1, . . . , αi−1). Each

of the simple extensions k(α1, . . . , αi) over k(α1, . . . , αi−1) is algebraic by assumption, hence each

one is finite by Proposition 3.4.16; we conclude that F is finite over k by Corollary 3.5.4.

Corollary 3.5.11. Given any algebraic extension of any field F over any field k and any algebraic

extension of any field E over F, we have that E is algebraic extension over k.

Proof. Given any element α ∈ E, we must demonstrate that α is algebraic over k. By hypothesis

that E is algebraic over F, there exist elements a0, a1, . . . , an ∈ F not all of which are zero such

that anα
n + · · · + a1α + a0 = 0F . Considering that coefficients a0, a1, . . . , an induce a finitely gen-

erated extension k(a0, a1, . . . , an) over k, we find that α is algebraic over k(a0, a1, . . . , an) so that

k(a0, a1, . . . , an, α) is a simple algebraic extension over k(a0, a1, . . . , an) by Corollary 3.5.2. Even

more, by assumption, each of the elements a0, a1, . . . , an is algebraic over k, hence the extension

field k(a0, a1, . . . , an, α) is obtained from a finite sequence of simple algebraic extensions over k. We

conclude by Theorem 3.5.10 that k(a0, a1, . . . , an, α) is a finite extension of k, hence there exists

an integer m ≥ 0 such that 1, α, α2, . . . , αm are linearly dependent over k. We obtain from here a

nonzero polynomial p(x) = amx
m + · · ·+ a2x

2 + a1x+ a0 in k[x] such that p(α) = 0k.

3.6 Chapter 3 Overview

Check back at a later date, as this section is currently under construction.

3.7 Chapter 3 Exercises

Exercise 3.7.1. Compute each of the following polynomials in the indicated polynomial ring.
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(a.) (x+ 1)3 in (Z/3Z)[x]

(b.) (3x+ 2)2 in (Z/4Z)[x]

(c.) (2x+ 1)(3x+ 1) in (Z/6Z)[x]

(d.) (2x2 + x+ 7)(4x2 + 6x+ 7) in (Z/8Z)[x]

(e.) (x+ 3)3 in (Z/9Z)[x]

(f.) (5x2 + 5)(6x3 + 2x) in (Z/10Z)[x]

Exercise 3.7.2. Compute the roots of each polynomial in the indicated polynomial ring.

(a.) x3 − x+ 1 in (Z/2Z)[x]

(b.) x5 − x in (Z/5Z)[x]

(c.) x5 + 6x4 + 3x2 + 1 in (Z/7Z)[x]

(d.) 3x− 7 in Z[x]

(e.) x6 − 16x3 + 64 in Q[x]

(f.) x4 − 4 in R[x]

Exercise 3.7.3. Use the Rational Roots Theorem to find the rational roots of the following.

(a.) x3 + x+ 1

(b.) 2x3 − x2 + 2x− 1

(c.) x3 − 6x2 + 11x− 6

(d.) 4x4 − 13x2 + 9

Exercise 3.7.4. Complete the polynomial long division in the indicated polynomial ring.

(a.)
x3 − 6x2 + 11x− 6

x− 1
in Z[x]

(b.)
x4 + x2 + 1

x2 − x+ 1
in Z[x]

(c.)
x5 − x2 + 1

x2 + 1
in Z[x]

(d.)
x5 − x3 + x2 + 1

x2 + 1
in (Z/2Z)[x]

(e.)
x4 + x3 + x2 + x+ 1

x− 1
in (Z/5Z)[x]

Exercise 3.7.5. Consider the univariate polynomial rng R[x] over an arbitrary rng R. Prove that

if p(x) is any polynomial of R[x] whose leading coefficient is a regular element of R, we have that

deg(pq) = deg(p) + deg(q) for any polynomial q(x) ∈ R[x].

Exercise 3.7.6. Consider the univariate polynomial rng R[x] over an arbitrary rng R. Prove that

if p(x) is any polynomial of R[x] whose leading coefficient is a regular element of R, then ever

polynomial of the form p(x)q(x) + r(x) such that q(x) and r(x) are polynomials of R[x] and either

r(x) is the zero polynomial or 0 ≤ deg(r) ≤ deg(p)− 1 is uniquely determined by q(x) and r(x).

Exercise 3.7.7. Complete the following steps to prove that any polynomial f(x) of a polynomial

rng R[x] over an arbitrary rng R can be uniquely divided by any monic polynomial p(x). Explicitly,

prove that for any polynomial f(x) in R[x], there exist unique polynomials q(x) and r(x) such that

f(x) = p(x)q(x) + r(x) and either r(x) is the zero polynomial or 0 ≤ deg(r) ≤ deg(p)− 1.

(a.) We proceed by the Principle of Complete Induction on the degree of the polynomial f(x) that

we wish to divide by the monic polynomial p(x). Prove the statement in the following cases.

(1.) f(x) is the zero polynomial.

(2.) p(x) is the constant polynomial 1R.
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(b.) Conclude that we may assume that neither f(x) is the zero polynomial nor p(x) is the constant

polynomial 1R. Particularly, we may assume that deg(p) − 1 ≥ 0. Prove that the statement

holds in the case that f(x) is a nonzero constant polynomial (so that deg(f) = 0).

(c.) Based on the previous part of the exercise, we may assume inductively that the statement

holds for all polynomials of degree at most n − 1. Consider the case that f(x) has degree n.

Prove the existence part of the statement in the case that deg(p)− 1 ≥ n.

(d.) We may assume next that the degree m of p(x) is at most the degree of f(x). Consider

the leading coefficient rn of f(x). Prove that f(x) − rnx
n−mp(x) is a polynomial of degree

strictly smaller than n; then, appeal to complete induction to find polynomials q(x) and r(x)

such that f(x) − rnx
n−mp(x) = p(x)q(x) + r(x) and either r(x) is the zero polynomial or

0 ≤ deg(r) ≤ deg(p)− 1. Conclude the existence by the Principle of Complete Induction.

(e.) Last, we will prove the uniqueness of the polynomials q(x) and r(x). Consider any polynomials

q1(x), q2(x), r1(x), and r2(x) such that f(x) = p(x)q1(x)+r1(x) and f(x) = p(x)q2(x)+r2(x).

Compare the identities to conclude that p(x)(q1(x)− q2(x)) = r2(x)− r1(x). On the contrary,

suppose that q1(x)− q2(x) and r2(x)− r1(x) are nonzero polynomials. Compare the degrees

of the polynomials p(x)(q1(x)− q2(x)) and r2(x)− r1(x) to derive a contradiction.

Explain how the above proof can be generalized to demonstrate that any polynomial f(x) of R[x]

can be uniquely divided by a polynomial p(x) whose leading coefficient is a unit.

Exercise 3.7.8. Consider the commutative unital ring R[x] of real polynomials in indeterminate

x. Convert Exercise 2.7.45 to use the Polynomial Division Algorithm to prove the following.

(a.) (ax+ b) is a maximal ideal of R[x] for any real numbers a and b such that a is nonzero.

(b.) (x2 + 1) is a maximal ideal of R[x].

Exercise 3.7.9 (Rational Roots Theorem). Complete the following steps to prove that for any

polynomial p(x) = cnx
n + cn−1x

n−1 + · · ·+ c1x+ c0 of degree n with integer coefficients, if a and b

are relatively prime integers, then the rational number a
b
(written in lowest terms) is a root of p(x)

only if a divides the constant term c0 and b divides the leading coefficient cn of p(x).

(a.) Consider any rational number a
b
such that gcd(a, b) = 1. Prove that if

p
(a
b

)
= cn

(a
b

)n
+ cn−1

(a
b

)n−1

+ · · ·+ c1

(a
b

)
+ c0 = 0,

then it follows that cna
n + cn−1a

n−1b+ · · ·+ c1ab
n−1 + c0b

n = 0.

(b.) Conclude from the previous step that a divides c0b
n.

(c.) Conclude from Exercise Euclid’s Lemma that a divides c0.

(d.) Conclude from the first step that b divides cna
n.

(e.) Conclude from Exercise Euclid’s Lemma that b divides cn.

Exercise 3.7.10. Determine if each polynomial is irreducible in the indicated polynomial ring.
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(a.) 2x+ 3 in Z[x]

(b.) 2x+ 3 in Q[x]

(c.) x2 − 4 in Z[x]

(d.) x2 + x+ 1 in Z[x]

(e.) x2 + x+ 1 in C[x]

(f.) x3 − 8 in Z[x]

(g.) x3 + x+ 1 in Z[x]

(h.) x3 + x+ 1 in R[x]

(i.) 2x4 + 9x− 6 in Z[x]

(j.) x4 + x2 + 1 in Z[x]

(k.) x5 − 32 in Z[x]

(l.) 5x5 − 11x4 + 22x2 − 33 in Z[x]

(m.) 7x3 + 6x2 + 4x+ 6 in Z[x]

(n.) 9x4 + 4x3 − 3x+ 7 in Z[x]

Exercise 3.7.11 (Freshman’s Dream). Consider any commutative unital ring R of prime charac-

teristic p. Prove that the identity (r + s)p = rp + sp holds for any elements r, s ∈ R.

(Hint: Use the Binomial Theorem to write (r+ s)p as a sum of products of the form risp−i for each

integer 0 ≤ i ≤ p; then, express the binomial coefficients
(
p
i

)
as integers in fraction form. Conclude

that for each integer 1 ≤ i ≤ n− 1, the binomial coefficient
(
p
i

)
is divisible by p.)

Exercise 3.7.12. Consider any prime number p. Prove that the polynomial xp − x has p distinct

roots in Z/pZ. Conclude that xp − x = x(x− 1)(x− 2) · · · (x− (p− 1)) in (Z/pZ)[x].

(Hint: Combine Fermat’s Little Theorem and the evaluation homomorphisms from (Z/pZ)[x].)

Exercise 3.7.13. Prove that there are infinitely many irreducible polynomials in Q[x].

Exercise 3.7.14. Prove that there are irreducible polynomials of arbitrary positive degree in Q[x].

Exercise 3.7.15. Given any positive integer n, the nth cyclotomic polynomial is given by

Φn(x) =
xn − 1

x− 1
= xn−1 + xn−2 + · · ·+ x+ 1.

Complete the following steps to prove that if p is a prime number, then Φp(x) is irreducible in Q[x].

(a.) Prove that Φp(x) is reducible if and only if Φp(x+ 1) is reducible.

(b.) Prove that every non-leading coefficient of Φp(x+ 1) is divisible by p.

(c.) Prove that the constant term of Φp(x) is not divisible by p2.

(d.) Conclude by Eisenstein’s Criterion the Φp(x+ 1) is p-Eisenstein. Conclude that Φp(x+ 1) is

irreducible so that Φp(x) is irreducible by the first part above.

Remarkably, it is true that if n is composite, then Φn(x) is reducible! Even though the proof when

n is odd is far from trivial, prove that if n = 2k for some integer k ≥ 2, then Φn(−1) = 0. Conclude

that if n is any even integer exceeding two, then Φn(x) is divisible by x+ 1, hence it is reducible.

Given any prime number p, call a polynomial q(x) = anx
n + an−1x

n−1 + · · · + a2x
2 + a1x + a0

with integer coefficients p-Steisenein if it holds that

(1.) p divides each of the coefficients a1, a2, . . . , an and

https://brilliant.org/wiki/binomial-theorem-n-choose-k/
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(2.) p does not divide the constant term a0 and

(3.) p2 does not divide the leading coefficient an.

Exercise 3.7.16 (Eisenstein’s Criterion, Revisited). Prove that if q(x) is a primitive p-Steisenein

polynomial in Z[x] for some prime number p, then q(x) is irreducible in Q[x].

(Hint: Prove that xnq(1/x) is a primitive p-Eisenstein polynomial in Z[x].)

Exercise 3.7.17. Let k be any field. Complete the following steps to prove that every non-constant

polynomial in k[x] can be written as a product of irreducible polynomials in k[x].

(a.) Consider the collection N of non-constant polynomials in k[x] that cannot be written as a

product of irreducible polynomials in k[x]. We seek to demonstrate that N is empty. On the

contrary, suppose that it is nonempty. Explain why no polynomial in N is irreducible.

(b.) Prove that N admits a polynomial p(x) such that every polynomial of k[x] of degree strictly

smaller than deg(p) admits a factorization as a product of irreducible polynomials.

(c.) Conclude from the previous two steps that p(x) can be written as a product of irreducible

polynomials; then, conclude from this contradiction that N is empty.

Exercise 3.7.18. Prove that if p(x) is a polynomial of odd degree in R[x] that does not admit a

root with multiplicity exceeding one, then p(x) has an odd number of real roots.

(Hint: By Theorem 3.2.21, write p(x) = p1(x) · · · pn(x) for some real polynomials p1(x), . . . , pn(x)

of degree one and two. Express deg(p) in terms of deg(p1), . . . , deg(pn) and rearrange.)

Exercise 3.7.19. Prove or disprove that each of the following commutative unital rings is a field.

(a.) Q[x]/(x2 − 4)

(b.) Q[x]/(x2 + 3)

(c.) Q[x]/(x3 + x+ 1)

(d.) Q[x]/(x3 − 2x2 + 2x− 1)

(e.) (Z/2Z)[x]/(x3 + 1)

(f.) (Z/2Z)[x]/(x3 + x+ 1)

(g.) (Z/3Z)[x]/(x3 + 2x+ 1)

(h.) (Z/5Z)[x]/(x5 + 1)

Exercise 3.7.20. Consider the monic polynomial x2 − 3 in Q[x].

(a.) Use the Polynomial Division Algorithm to find polynomials p(x) and q(x) such that

(x2 − 3)p(x) + (2x+ 3)q(x) = 1.

(b.) Prove that Q[x]/(x2 − 3) is a field that contains Q and a root α of x2 − 3.

(c.) Express the element α4 − 3α3 + α2 − α as a polynomial in α of degree at most one.

(d.) Express the element (2α + 3)−1 as a polynomial in α of degree at most one.

Exercise 3.7.21. Consider the monic polynomial x3 + x+ 1 in (Z/2Z)[x].
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(a.) Use the Polynomial Division Algorithm to find polynomials p(x) and q(x) such that

(x3 + x+ 1)p(x) + (x2 + 1)q(x) ≡ 1 (mod 2).

(b.) Prove that F = (Z/2Z)[x]/(x3+x+1) is a field that contains Z/2Z and a root α of x3+x+1.

(c.) Express each of the eight elements of F as a polynomial in α of degree at most two.

(d.) Express the element α5 + α4 + α3 + α2 + α + 1 as a polynomial in α of degree at most two.

(e.) Express the element (α2 + 1)−1 as a polynomial in α of degree at most two.

Exercise 3.7.22. Construct a finite field F with the specified number of elements.

(a.) |F | = 8 = 23

(b.) |F | = 9 = 32

(c.) |F | = 27 = 33

(d.) |F | = 32 = 25

Exercise 3.7.23. Prove that each of the following complex numbers is algebraic over Q.

(a.) 4
√
4

(b.) 1 + 3
√
3

(c.) −1 + i

(d.)
√
i−

√
2

(e.) cos
(
π
4

)
+ i sin

(
π
4

)
(f.) cos

(
2π
5

)
(Hint: On part (f.), it is useful to note that if u = 2π

5
, then cos(2u) = cos(3u). Express cos(2u) and

cos(3u) as polynomials in cos(u); then, use that cos(3u)− cos(2u) = 0 to conclude the result.)

Exercise 3.7.24. Compute the minimal polynomial of the following complex numbers over Q.

(a.)
√
3

(b.)
√

1 +
√
3

(c.)
√
3 +

√
5

(d.) 4
√
5

(e.) 6
√
2

(f.) cos
(
π
4

)
+ i sin

(
π
4

)
(g.) i 6

√
2

(h.) cos
(
2π
5

)
(Hint: On part (h.), find an irreducible quadratic factor of the polynomial from Exercise 3.7.23(f.);

then, argue that this irreducible quadratic polynomial is the minimal polynomial.)

Exercise 3.7.25. Consider any positive integer a.We say that a is a perfect square if there exists

a positive integer b such that a = b2.

(a.) Prove that if a is a perfect square, then the positive integer b such that a = b2 is uniquely

determined by a. Conclude that we may write in this case that b =
√
a.

(b.) Prove that if a is a perfect square, then x2 − a = (x−
√
a)(x+

√
a) is a Q-factorization.
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(c.) Prove that if a is not a perfect square, then
√
a is not a rational number.

(Hint: On the contrary, if
√
a were a rational number, then it must be an integer; otherwise,

we could find relatively prime positive integers p and q such that
√
a = p

q
and p2 = aq2.)

(d.) Prove that if a is not a perfect square, then the minimal polynomial of
√
a over Q is x2 − a.

(e.) Prove that if a is not a perfect square, then Q(
√
a) is a finite algebraic extension of Q.

Exercise 3.7.26. Prove that if a and b are nonzero rational numbers, then Q(
√
a) = Q(

√
b) if and

only if there exists a nonzero rational number c for which a = c2b.

Exercise 3.7.27. Prove that
√
π is algebraic over Q(π); then, find the degree of Q(

√
π) over Q(π).

Exercise 3.7.28. Prove that π is algebraic over Q(π4); then, find the degree of Q(π) over Q(π4).

Exercise 3.7.29. Prove that if α is a positive real transcendental number, then αp/q is not algebraic

over Q(α) for any nonzero relatively prime integers p and q.

Exercise 3.7.30. Consider any element α of an extension field F of any field k.

(a.) Prove that if α is transcendental over k, then k(α) is an infinite-dimensional k-vector space.

(b.) Prove that if α is transcendental over k, then αn is transcendental over k for all n ∈ Z \ {0}.

(c.) Prove that if α is transcendental over k, then for any elements a0, a1, . . . , an of k (not all zero),

the element anα
n + · · ·+ a1α + a0 of k(α) admits a unique multiplicative inverse in k(α).

(d.) Prove that if α is transcendental over k, then for any element β of F such that α is algebraic

over k(β), it must also hold that β is algebraic over k(α).

(Hint: By definition, we have that α is algebraic over k(β) if and only if there exist polyno-

mials p0(x), p1(x), . . . , pn(x) in k[x] such that pn(β)α
n+ · · ·+ p1(β)α+ p0(β) = 0k. Prove that

if α is transcendental over k, then some polynomial pi(x) must be non-constant. Observe that

f(x, y) = pn(x)y
n+ · · ·+p1(x)y+p0(x) = qm(y)x

m+ · · ·+q1(y)x+q0(y) for some polynomials

q0(y), q1(y), . . . , qm(y) in k[y] at least one of which is non-constant and f(β, α) = 0k.)

Exercise 3.7.31. Prove that C is an algebraic extension of R.
(Hint: Given any complex number a+ bi, construct a polynomial with roots a+ bi and a− bi.)

Exercise 3.7.32. Prove that if k is a finite field of prime order p and α is any algebraic element of

any extension field F of k, then k(α) is a finite field of order pn for some integer n ≥ 1.

Exercise 3.7.33. Consider any field k.

(a.) Prove that if {Fi}i∈I is any nonempty collection of fields indexed by I such that Fi ⊆ k for

each index i, then ∩i∈IFi is the smallest (with respect to inclusion) field contained in k.

(b.) Prove that if {Fi}i∈I is any nonempty collection of fields indexed by I such that these fields

form an ascending chain k ⊆ F1 ⊆ F2 ⊆ · · · , then ∪i∈IFi is a field that contains k.

(c.) Prove that if {Fi}i∈I is any nonempty collection of algebraic extensions of k indexed by I such

that these fields form an ascending chain k ⊆ F1 ⊆ F2 ⊆ · · · , then ∪i∈IFi is algebraic over k.

Exercise 3.7.34. Prove or disprove that each of the following pairs of finite extensions are equal.
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(a.) Q(3 + i) and Q(1− i)

(b.) Q(
√
20) and Q(

√
5)

(c.) Q(
√
2) and Q(

√
3)

(d.) Q(
√
2, 3
√
2) and Q( 6

√
2)

(e.) Q(
√
2,
√
8) and Q( 3

√
8)

(f.) Q( 4
√
3) and Q(i 4

√
3)

Exercise 3.7.35. Consider any field k of characteristic other than 2. Given any elements a and b in

k, let
√
a denote a root of the monic polynomial x2−a in k[x]. Prove that k(

√
a+

√
b) = k(

√
a,
√
b).

Exercise 3.7.36. Prove that if k is an extension field over Q such that [k : Q] = 2, then k = Q(
√
a)

for some integer a that is not divisible by the square of any prime number (i.e., a is square-free).

Exercise 3.7.37. Prove that if α is any algebraic element of any extension field F of any field k

such that the dimension [k(α) : k] is odd, then we must have that k(α) = k(α2).

Exercise 3.7.38. Prove that if F is any finite extension over some field k such that the dimension

[F : k] of F as a k-vector space is prime, then F must be a simple extension of k. Explicitly, prove

that for every element α of F that does not lie in k, we have that F = k(α).

Exercise 3.7.39. Consider any algebraic elements α and β of any extension field F of any field k.

(a.) Prove that if the degrees of µα(x) and µβ(x) over k are relatively prime, then it holds that

[k(α, β) : k] = [k(α) : k][k(β) : k].

(b.) Give an explicit example of a field k and a pair of algebraic elements α and β over k for which

the positive integers [k(α, β) : k] and [k(α) : k][k(β) : k] are not equal.

(c.) Use the criterion of the first part above to find Q(
√
2, 3
√
2) without constructing a tower.

Exercise 3.7.40. Consider any pair of monic irreducible polynomials p(x) and q(x) in the univariate

polynomial ring k[x] over any field k. Prove that if the degrees of p(x) and q(x) are relatively prime,

then for any root α of p(x) in any extension field F of k, we have that q(x) is irreducible over k(α).

(Hint: Given any root β of q(x) in any extension field E of k, compute and compare the k-vector

space dimension of k(α, β) over k in two different ways using Proposition 3.5.11 and Exercise 3.7.39.)

Exercise 3.7.41. Consider a finite field k of prime characteristic p.

(a.) Prove that if F is any extension field of k, then F is a field of prime characteristic p.

(b.) Prove that if F is any extension field of k such that |F | is finite, then F is algebraic over k.

(c.) Prove that the order of the finite field k is pn for some integer n ≥ 1.

(Hint: Begin by demonstrating that k contains an isomorphic copy of the finite field Z/pZ, i.e.,
prove that there exists an injective unital ring homomorphism φ : Z/pZ → k. Consequently,

we may view k as an extension field of Z/pZ, hence k is a (Z/pZ)-vector space. Refer to the

previous part of this problem to deduce that k is a finite extension of Z/pZ, hence k admits

a basis {α1, . . . , αn} over Z/pZ. Use this to determine the form of any element of k.)

(d.) Conclude that every finite field has order pn for some prime number p and some integer n ≥ 1.
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